Answer:
True
The escape speed from the Moon is much smaller than from Earth.
Explanation:
The escape speed is defined as:
(1)
Where G is the gravitational constant, M is the mass and r is the radius.
The mass of the Earth is
and its radius is 
Then, replacing those values in equation 1 it is gotten.
For the case of the Moon:
Hence, the escape speed from the Moon is much smaller than from Earth.
Since it has a smaller mass and smaller radius compared to that from the Earth.
Answer:
0.79 s
Explanation:
We have to calculate the employee acceleration, in order to know the minimum time. According to Newton's second law:

The frictional force is maximum since the employee has to apply a maximum force to spend the minimum time. In y axis the employee's acceleration is zero, so the net force is zero. Recall that 
Now, we find the acceleration:

Finally, using an uniformly accelerated motion formula, we can calculate the minimum time. The employee starts at rest, thus his initial speed is zero:

Well, they're not quite the way Newton expressed it, but out of all this mess of statements, there are two that are correct AND come from Newton's 2nd Law of Motion:
<em>-- The smaller the mass of an object, the greater the acceleration of that object when a force is applied. </em>
<em>-- The greater the force applied, the greater the acceleration.</em>
For the <u><em>other </em></u>statements in the question:
-- <em>Every reaction is equal to the force applied.</em> True; comes from Newton's <u><em>3rd</em></u> law of motion.
-- <em>Forces are balanced when they are equal and opposite.</em> True; kind of a definition, not from Newton's laws of motion.
-- <em>An object at rest or in motion will remain at rest or in motion unless acted upon by an unbalanced force.
</em> True; comes from Newton's <em><u>1st </u></em>law of motion.
Our planet is closed system because there is a limit of how much matter could be exchanged.
Answer : The correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit
Explanation :
Conversion of degree Celsius to Kelvin :

Conversion of degree Celsius to degrees Fahrenheit :

By using these two conversion factors, we get the three temperature readings all mean the same thing.
For option A :


For option B :


For option C :


For option D :


From the given options, only option (D) is correct.
Hence, the correct option is, (D) 273 Kelvin, 0 degrees Celsius, 32 degrees Fahrenheit