1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Julli [10]
4 years ago
14

Can you add a negative and a positive when doing like term

Mathematics
2 answers:
Verdich [7]4 years ago
5 0
Yes, you can add a negative and a positive when doing like terms.
tester [92]4 years ago
3 0
In short yes. But to know for sure you can combine any term no matter the sign as long as they have the same type of variable attached to them for example

x {}^{2} + x
this cannot be combined because one is squared the other isn't
x + - x
you can combine these because they're the same type of variable this just becomes 1
x + 3 + - 5

we cant combine x into these because it's not just a constant number but we can combine 3 and negative 5 to get
x - 2

hope this helps!
You might be interested in
The graph of which of the following equations contains the points (2, 3) and (3, 2)?
IceJOKER [234]

Answer:

(2, 3) lies on the line y = 5 - x.  

Step-by-step explanation:

Were there only two possible answer choices?

We can determine whether or not a given point, such as (2, 3), is contained in a function such as y = x - 1, by substituting the given coordinates 2 and 3 for x and y respectively; is the resulting equation true or false?

Check out (2, 3) and y = x - 1:  3 = 2 - 1, or 3 = 1.  False.  (2, 3) does not lie on the line y = x - 1.  Does (2, 3) lie on the line y = 5 - x?  Is 3 = 5 - 2 true?  Yes.  So (2, 3) lies on the line y = 5 - x.

Check out (2, 3) and y = 7 - 2x.  Is 3 = 7 - 2(1) true?  No, it is not true.

8 0
4 years ago
Are the ratios 8:16 and 2:4 equivalent? need answers quick!
drek231 [11]

Answer:

yes

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
Between which two numbers is Negative 1.5 located on a number line?
Ede4ka [16]
Between -2&-1 is the answer
5 0
3 years ago
Read 2 more answers
❗️10 points❗️
astraxan [27]

Answer:

cubic trinomial

Step-by-step explanation:

Because the highest power of x is 3, this is a cubic trinomial.  

6 0
3 years ago
In this problem you will use undetermined coefficients to solve the nonhomogeneous equation y′′+4y′+3y=8te^−t+6e^−t−(9t+6)
Luden [163]

We're given the ODE,

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) - (9<em>t</em> + 6)

(where I denote exp(<em>x</em>) = <em>eˣ </em>)

First determine the characteristic solution:

<em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 0

has characteristic equation

<em>r</em> ² + 4<em>r</em> + 3 = (<em>r</em> + 1) (<em>r</em> + 3) = 0

with roots at <em>r</em> = -1 and <em>r</em> = -3, so the characteristic solution is

<em>y</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> )

For the non-homogeneous equation, assume two ansatz solutions

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

and

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em />

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> ) … … … [1]

Compute the derivatives of <em>y</em>₁ :

<em>y</em>₁ = (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁' = (2<em>at</em> + <em>b</em>) exp(-<em>t </em>) - (<em>at</em> ² + <em>bt</em> + <em>c</em>) exp(-<em>t </em>)

… = (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

<em>y</em>₁'' = (-2<em>at</em> + 2<em>a</em> - <em>b</em>) exp(-<em>t </em>) - (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) exp(-<em>t </em>)

… = (<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) exp(-<em>t</em> )

Substitute them into the ODE [1] to get

→   [(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>)] exp(-<em>t</em> ) = 8<em>t</em> exp(-<em>t </em>) + 6 exp(-<em>t</em> )

(<em>at</em> ² + (<em>b</em> - 4<em>a</em>) <em>t</em> + 2<em>a</em> - 2<em>b</em> + <em>c</em>) + 4 (-<em>at</em> ² + (2<em>a</em> - <em>b</em>) <em>t</em> + <em>b</em> - <em>c</em>) + 3 (<em>at</em> ² + <em>bt</em> + <em>c</em>) = 8<em>t</em> + 6

4<em>at</em> + 2<em>a</em> + 2<em>b</em> = 8<em>t</em> + 6

→   4<em>a</em> = 8   and   2<em>a</em> + 2<em>b</em> = 6

→   <em>a</em> = 2   and   <em>b</em> = 1

→   <em>y</em>₁ = (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>)

(Note that we don't find out anything about <em>c</em>, but that's okay since it would have gotten absorbed into the first characteristic solution exp(-<em>t</em> ) anyway.)

• <em>y''</em> + 4<em>y'</em> + 3<em>y</em> = -(9<em>t</em> + 6) … … … [2]

Compute the derivatives of <em>y</em>₂ :

<em>y</em>₂ = <em>at</em> + <em>b</em>

<em>y</em>₂' = <em>a</em>

<em>y</em>₂'' = 0

Substitute these into [2] :

4<em>a</em> + 3 (<em>at</em> + <em>b</em>) = -9<em>t</em> - 6

3<em>at</em> + 4<em>a</em> + 3<em>b</em> = -9<em>t</em> - 6

→   3<em>a</em> = -9   and   4<em>a</em> + 3<em>b</em> = -6

→   <em>a</em> = -3   and   <em>b</em> = 2

→   <em>y</em>₂ = -3<em>t</em> + 2

Then the general solution to the original ODE is

<em>y(t)</em> = <em>C</em>₁ exp(-<em>t</em> ) + <em>C</em>₂ exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t </em>) exp(-<em>t </em>) - 3<em>t</em> + 2

Use the initial conditions <em>y</em> (0) = 2 and <em>y'</em> (0) = 2 to solve for <em>C</em>₁ and <em>C</em>₂ :

<em>y</em> (0) = <em>C</em>₁ + <em>C</em>₂ + 2 = 2

→   <em>C</em>₁ + <em>C</em>₂ = 0 … … … [3]

<em>y'(t)</em> = -<em>C</em>₁ exp(-<em>t</em> ) - 3<em>C</em>₂ exp(-3<em>t</em> ) + (-2<em>t</em> ² + 3<em>t</em> + 1) exp(-<em>t </em>) - 3

<em>y'</em> (0) = -<em>C</em>₁ - 3<em>C</em>₂ + 1 - 3 = 2

→   <em>C</em>₁ + 3<em>C</em>₂ = -4 … … … [4]

Solve equations [3] and [4] to get <em>C</em>₁ = 2 and <em>C</em>₂ = -2. Then the particular solution to the initial value problem is

<em>y(t)</em> = -2 exp(-3<em>t</em> ) + (2<em>t</em> ² + <em>t</em> + 2) exp(-<em>t </em>) - 3<em>t</em> + 2

7 0
3 years ago
Other questions:
  • Can someone please answer this question please answer it correctly and please show work please answer it correctly
    8·1 answer
  • Simplify the following expressions <br> 1/4 (24-16x)<br><br> what is the sum?<br> 7/4 + (-1/5)
    12·1 answer
  • Follow the steps to solve for the variable in this two-step equation: 5×-10=0
    13·1 answer
  • In order to figure out how much money she needs for her trip to the store, Jessica has to solve this equation. ​ 2(x+1)+1=5 ​​Sh
    7·2 answers
  • When the outliers are removed, how does the mean change? (2 points) dot plot with 1 on 50, 1 on 76, 1 on 78, 2 on 79, 1 on 80, 1
    13·1 answer
  • What's the value of 6 in 346094
    10·2 answers
  • Identify the subsets of real numbers to which the number 25√ belongs.
    13·1 answer
  • If line a and line b are parallel lines, which statement is true?
    12·1 answer
  • By the way need to show the work.
    5·2 answers
  • In which quadrant does θ lie given that sinθ&lt;0 and cosθ&gt;0?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!