Answer:
The distance traveled during its acceleration, d = 214.38 m
Explanation:
Given,
The object's acceleration, a = -6.8 m/s²
The initial speed of the object, u = 54 m/s
The final speed of the object, v = 0
The acceleration of the object is given by the formula,
a = (v - u) / t m/s²
∴ t = (v - u) / a
= (0 - 54) / (-6.8)
= 7.94 s
The average velocity of the object,
V = (54 + 0)/2
= 27 m/s
The displacement of the object,
d = V x t meter
= 27 x 7.94
= 214.38 m
Hence, the distance the object traveled during that acceleration is, a = 214.38 m
Answer:
As the ball falls towards the ground, its gravitational potential energy is transformed into kinetic energy. The kinetic energy of an object is the energy it possesses due to its motion. The kinetic energy of the ball will continue increasing as the ball gains momentum, until it finally collides with a surface.
Explanation:
Here in order to find out the distance between two planes after 3 hours can be calculated by the concept of relative velocity

here
speed of first plane is 700 mi/h at 31.3 degree


speed of second plane is 570 mi/h at 134 degree


now the relative velocity is given as


now the distance between them is given as



so the magnitude of the distance is given as

miles
so the distance between them is 2985.6 miles
For the answer to the question above, I assume that the question is two objects, O1 and O2 have charges +1.0 µC and -1.9 µC, respectively, and a third object, O3,?<span>two objects, O1 and O2 have charges +1.0 µC and -1.9 µC, respectively, and a third object, O3, is electrically neutral.
</span>From Gauss's law:
<span>Flux = ∫c E . dA = q/eo </span>
<span>Since this surface encloses all </span>
<span>charge, we can simplify: </span>
<span>Flux = (q1+q2+q3)/eo </span>
<span>Flux = </span>
<span>( (1*10^-6)+(-1.9*10^-6)+(0) )/(8.85*10^-12) = -101694.92 N·m2/C</span>
Answer:
40 gm
Explanation:
size one is 1/3 of size 3
so the mass is also 1/3
1/3 * 120 gm = 40 gm