Answer:
a) Therefore 2.6km is greater than 2.57km.
Statement A is greater than statement B.
b) Therefore 5.7km is equal to 5.7km
Statement A is equal to statement B
Explanation:
a) Statement A : 2.567km to two significant figures.
2.567km 2. S.F = 2.6km
Statement B : 2.567km to three significant figures.
2.567km 3 S.F = 2.57km
Therefore 2.6km is greater than 2.57km.
Statement A is greater than statement B.
b) statement A: (2.567 km + 3.146km) to 2 S.F
(2.567km + 3.146km) = 5.713km to 2 S.F = 5.7km
Statement B : (2.567 km, to two significant figures) + (3.146 km, to two significant figures).
2.567km to 2 S.F = 2.6km
3.146km to 2 S.F = 3.1km
2.6km + 3.1km = 5.7km
Therefore 5.7km is equal to 5.7km
Statement A is equal to statement B
Your answer is infrared, visible, ultraviolet.
<span>Most low-level radioactive waste (LLW) is typically sent to land-based disposal immediately following its packaging for long-term management. This means that for the majority (~90% by volume) of all of the waste types produced by nuclear technologies, a satisfactory disposal means has been developed and is being implemented around the world.
</span>
Radioactive wastes are stored so as to avoid any chance of radiation exposure to people, or any pollution.The radioactivity of the wastes decays with time, providing a strong incentive to store high-level waste for about 50 years before disposal.Disposal of low-level waste is straightforward and can be undertaken safely almost anywhere.Storage of used fuel is normally under water for at least five years and then often in dry storage.<span>Deep geological disposal is widely agreed to be the best solution for final disposal of the most radioactive waste produced.
</span>I suggest this site on this subject http://www.world-nuclear.org/information-library/nuclear-fuel-cycle/nuclear-wastes/storage-and-dispo...
Explanation:
A light bulb changes electrical energy into <em>heat energy and light energy .</em>
Answer:

Explanation:
The change in electrical potential energy of a charged particle moving through a potential difference is given by

where
q is the magnitude of the charge of the particle
is the potential difference
In this problem:
- the charge of the particle is 3.00 elementary charges, so

- the potential difference is

So, the change in electrical potential energy is
