Complete Question
A uniform electric field of magnitude 144 kV/m is directed upward in a region of space. A uniform magnetic field of magnitude 0.38 T perpendicular to the electric field also exists in this region. A beam of positively charged particles travels into the region. Determine the speed of the particles at which they will not be deflected by the crossed electric and magnetic fields. (Assume the beam of particles travels perpendicularly to both fields.)
Answer:
The velocity is
Explanation:
From the question we are told that
The magnitude of the electric field is 
The magnetic field is 
The force due to the electric field is mathematically represented as

and
The force due to the magnetic field is mathematically represented as

Now given that it is perpendicular , 
=> 
=> 
Now given that it is not deflected it means that

=> 
=> 
substituting values


A controlled experiment is best described as a safe, in depth, and insightful display that helps you understand the purpose of the experiment better
Usually describes a system by a set of variables in a set of equations established relationships between the variables and variables maybe of many types real or integer numbers Boolean values of strings for example
Answer:
<h3><em>
28.01m/s.</em></h3>
Explanation:
Given maximum height reached by the ball as H = 40 metres
Since the ball rises straight up when hit by a ball, then the angle of launch will be perpendicular to the ground and that is 90°.
To determine the upward speed of the ball in meters per second after it got struck by the bat, we will use the formula for calculating the maximum height according to projectile motion;
Maximum Height H =
where;
u is the speed of the ball
is the angle of launch
g is the acceleration due to gravity = 9.81m/s²
Substituting the given parameters into the formula;

<em>Hence the upward speed of the ball in meters per second after it got struck by the bat is 28.01m/s.</em>