It’s carbon and it’s heat value
Equations of the vertical launch:
Vf = Vo - gt
y = yo + Vo*t - gt^2 / 2
Here yo = 35.0m
Vo is unknown
y final = 0
t = 4.00 s
and I will approximate g to 10m/s^2
=> 0 = 35.0 + Vo * 4 - 5 * (4.00)^2 => Vo = [-35 + 5*16] / 4 = - 45 / 4 = -11.25 m/s
The negative sign is due to the fact that the initial velocity is upwards and we assumed that the direction downwards was positive when used g = 10m/s^2.
Answer: 11.25 m/s
Answer:
72
Explanation:
The displacement of an object can be found from the velocity of the object by integrating the expression for the velocity.
In this problem, the velocity of the sport car is given by the expression

In order to find the expression for the position of the car, we integrate this expression. We find:

where C is an arbitrary constant.
Here we want to find the displacement after 3 seconds. The position at t = 0 is

While the position after t = 3 s is

Therefore, the displacement of the car in 3 seconds is

Answer:
(a) 
(b) 
Explanation:
(a) The surface current density of a conductor is the current flowing per unit length of the conductor.

Considering a wire, the current is uniformly distributed over the circumferenece of the wire.

The radius of the wire = a

The surface current density 
(b) The current density is inversely proportional
......(1)
k is the constant of proportionality

........(2)
substituting (1) into (2)





substitute 

Answer:10m/s
Explanation:
Wave speed ,v=for
Where π= wavelength=2m
Period =1/f f=frequency of wave
F=1/period
=1/0.2=5Hz
So speed of waves,v=5×2=10m/s