Answer:
x=31.09m
Explanation:
p1=p2
The momentum of flatcar and the momentum of the worker so
The velocity of the worker is:

The total motion has a total velocity and is

The time the worker take walking is

Now the total time and the total velocity determinate the motion of tha flatcar how far has moved

Answer:
a =( -0.32 i ^ - 2,697 j ^) m/s²
Explanation:
This problem is an exercise of movement in two dimensions, the best way to solve it is to decompose the terms and work each axis independently.
Break down the speeds in two moments
initial
v₀ₓ = v₀ cos θ
v₀ₓ = 5.25 cos 35.5
v₀ₓ = 4.27 m / s
= v₀ sin θ
= 5.25 sin35.5
= 3.05 m / s
Final
vₓ = 6.03 cos (-56.7)
vₓ = 3.31 m / s
= v₀ sin θ
= 6.03 sin (-56.7)
= -5.04 m / s
Having the speeds and the time, we can use the definition of average acceleration that is the change of speed in the time order
a = (
- v₀) /t
aₓ = (3.31 -4.27)/3
aₓ = -0.32 m/s²
= (-5.04-3.05)/3
= -2.697 m/s²
Answer:
c)
Explanation:
A collision is said to be elastic when the total kinetic energy is the same after the collision. The speed of objects that are stuck together will always be less than the initial speed of the object that was in motion given that the other particle was at rest. It is because the kinetic energy of the system was due to the moving object. The objects have a greater overall mass when they are stuck. If the kinetic energy is the same and the mass increases, the velocity must decrease.
Answer:
1.414
Explanation:
Snell's law states:
n₁ sin θ₁ = n₂ sin θ₂
where n is the index of refraction and θ is the angle of incidence (relative to the normal).
The index of refraction of air is approximately 1. So:
1 sin 45° = n sin 30°
n = sin 45° / sin 30°
n = 1.414
Round as needed.
I think this is the answer. I hope you can understand.