1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SVETLANKA909090 [29]
3 years ago
10

As air becomes warmer, it

Physics
2 answers:
shutvik [7]3 years ago
3 0
As air becomes warmer it condensates
skelet666 [1.2K]3 years ago
3 0
As air becomes warmer, it "compressed"
You might be interested in
In this photograph, a soccer player is about to kick the ball. Use the situation to explain that when two objects interact, the
Makovka662 [10]

hey you look nice (pic).

According to Newton’s first law, if no force is applied to a ball, it will continue moving at the same speed and direction as it did before. When we put the ball on the grass it stays in its place, namely it stays in zero motion since no force is applied to it. However, after we kick the ball, it will continue moving in the direction we kicked it. Its speed will drop gradually, due to friction (a force applied on the ball in the opposite direction to its motion), but the direction of its motion will remain the same.

According to Newton’s second law, a force applied to an object changes that object’s acceleration – namely, the rate at which the speed of the object changes. When we kick the ball, the force we apply to it causes it to accelerate from a speed of 0 to a speed of dozens of kilometers per hour. When the ball is released from the foot, it begins to decelerate (negative acceleration) due to the force of friction that is exerted upon it (as we observed in the previous example). If we were to kick a ball in outer space, where there is no friction, it would accelerate during the kick, and then continue moving at a constant speed in the direction that we kicked at, until it hits some other object or another force is applied to it.

8 0
3 years ago
A projectile of mass m is launched with an initial velocity vector v i making an angle θ with the horizontal as shown below. The
sergeinik [125]
Angular momentum is given by the length of the arm to the object, multiplied by the momentum of the object, times the cosine of the angle that the momentum vector makes with the arm. From your illustration, that will be: 
<span>L = R * m * vi * cos(90 - theta) </span>

<span>cos(90 - theta) is just sin(theta) </span>
<span>and R is the distance the projectile traveled, which is vi^2 * sin(2*theta) / g </span>

<span>so, we have: L = vi^2 * sin(2*theta) * m * vi * sin(theta) / g </span>

<span>We can combine the two vi terms and get: </span>

<span>L = vi^3 * m * sin(theta) * sin(2*theta) / g </span>

<span>What's interesting is that angular momentum varies with the *cube* of the initial velocity. This is because, not only does increased velocity increase the translational momentum of the projectile, but it increase the *moment arm*, too. Also note that there might be a trig identity which lets you combine the two sin() terms, but nothing jumps out at me right at the moment. </span>

<span>Now, for the first part... </span>

<span>There are a few ways to attack this. Basically, you have to find the angle from the origin to the apogee (highest point) in the arc. Once we have that, we'll know what angle the momentum vector makes with the moment-arm because, at the apogee, we know that all of the motion is *horizontal*. </span>

<span>Okay, so let's get back to what we know: </span>

<span>L = d * m * v * cos(phi) </span>

<span>where d is the distance (length to the arm), m is mass, v is velocity, and phi is the angle the velocity vector makes with the arm. Let's take these one by one... </span>

<span>m is still m. </span>
<span>v is going to be the *hoizontal* component of the initial velocity (all the vertical component got eliminated by the acceleration of gravity). So, v = vi * cos(theta) </span>
<span>d is going to be half of our distance R in part two (because, ignoring friction, the path of the projectile is a perfect parabola). So, d = vi^2 * sin(2*theta) / 2g </span>

<span>That leaves us with phi, the angle the horizontal velocity vector makes with the moment arm. To find *that*, we need to know what the angle from the origin to the apogee is. We can find *that* by taking the arc-tangent of the slope, if we know that. Well, we know the "run" part of the slope (it's our "d" term), but not the rise. </span>

<span>The easy way to get the rise is by using conservation of energy. At the apogee, all of the *vertical* kinetic energy at the time of launch (1/2 * m * (vi * sin(theta))^2 ) has been turned into gravitational potential energy ( m * g * h ). Setting these equal, diving out the "m" and dividing "g" to the other side, we get: </span>

<span>h = 1/2 * (vi * sin(theta))^2 / g </span>

<span>So, there's the rise. So, our *slope* is rise/run, so </span>

<span>slope = [ 1/2 * (vi * sin(theta))^2 / g ] / [ vi^2 * sin(2*theta) / g ] </span>

<span>The "g"s cancel. Astoundingly the "vi"s cancel, too. So, we get: </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ sin(2*theta) ] </span>

<span>(It's not too alarming that slope-at-apogee doesn't depend upon vi, since that only determines the "magnitude" of the arc, but not it's shape. Whether the overall flight of this thing is an inch or a mile, the arc "looks" the same). </span>

<span>Okay, so... using our double-angle trig identities, we know that sin(2*theta) = 2*sin(theta)*cos(theta), so... </span>

<span>slope = [ 1/2 * sin(theta)^2 ] / [ 2*sin(theta)*cos(theta) ] = tan(theta)/4 </span>

<span>Okay, so the *angle* (which I'll call "alpha") that this slope makes with the x-axis is just: arctan(slope), so... </span>

<span>alpha = arctan( tan(theta) / 4 ) </span>

<span>Alright... last bit. We need "phi", the angle the (now-horizontal) momentum vector makes with that slope. Draw it on paper and you'll see that phi = 180 - alpha </span>

<span>so, phi = 180 - arctan( tan(theta) / 4 ) </span>

<span>Now, we go back to our original formula and plug it ALL in... </span>

<span>L = d * m * v * cos(phi) </span>

<span>becomes... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( 180 - arctan( tan(theta) / 4 ) ) ] </span>

<span>Now, cos(180 - something) = cos(something), so we can simplify a little bit... </span>

<span>L = [ vi^2 * sin(2*theta) / 2g ] * m * [ vi * cos(theta) ] * [ cos( arctan( tan(theta) / 4 ) ) ] </span>
3 0
2 years ago
Read 2 more answers
Use the image to determine the volume of the rock.
maria [59]

Answer:

12 ml

Explanation:

The initial volume in the cylinder is 20 ml

 adding the rock adds volume to the cylinder

       the new volume is 32 ml .....the increase in volume is the volume of the rock :   32 - 20 = 12 ml    volume of rock

6 0
2 years ago
If we connect a third bulb in our series circuit, say one with 4
Alexus [3.1K]

Answer:

The current will decrease.

Explanation:

When another bulb is added, the resistance is going to increase. Keep in mind that the current is inversely proportional to the resistance (<em>Ohm's law: R= </em><em>V</em><em>/</em><em>I</em><em> </em><em>).</em> Therefore when the resistance increase, the current running in the circuit will decrease.

6 0
2 years ago
List two applications of electrostatics.
Tems11 [23]
Atmospheric electricity and storms,electric current in a vacuum,spark discharge,electrostatic control filters and industrial electrostatic  separation <- those are just a few
4 0
2 years ago
Other questions:
  • What is question 10—20 PTS!!
    9·1 answer
  • In one type of solar energy system, sunlight heats the air within solar panels, which heats copper tubes filled with water. what
    9·1 answer
  • Which type of electromagnetic radiation is responsible for the colors of<br> objects?
    7·1 answer
  • Suppose you heat a liquid and then bubbles are produced. With no other evidence, can you tell whether a physical or chemical is
    7·1 answer
  • What type of energy does a spinning turbine have?
    14·1 answer
  • Why does physics involve math?
    14·1 answer
  • The image of the lemon is at point I. What is the size of the image compared to the size of the lemon?
    8·2 answers
  • Which of the following are binary ionic compounds?
    11·1 answer
  • A mustang, has an average velocity of 33 m/s while covering a course that is 21 miles long. (1 mile = 1609 m). How long did it t
    10·1 answer
  • PLZ HELP ME WITH THIS QUESTION! NO LINKS!!<br>will give 5 stars and brainliest ​
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!