A mass weighing 32 pounds stretches a spring 2 feet.
(a) Determine the amplitude and period of motion if the mass is initially released from a point 1 foot above the equilibrium position with an upward velocity of 6 ft/s.
(b) How many complete cycles will the mass have completed at the end of 4 seconds?
Answer:

Period =
seconds
8 cycles
Explanation:
A mass weighing 32 pounds stretches a spring 2 feet;
it implies that the mass (m) = 
m= 
= 1 slug
Also from Hooke's Law
2 k = 32
k = 
k = 16 lb/ft
Using the function:

(because of the initial position being above the equilibrium position)
( as a result of upward velocity)
NOW, we have:

However;
means

also implies that:


Hence, 





Period can be calculated as follows:
= 
=
seconds
How many complete cycles will the mass have completed at the end of 4 seconds?
At the end of 4 seconds, we have:


cycles
Answer:
Both experienced the same magnitude impulse
Explanation:
This is because, the impulse force is internal to the system of both the tennis ball and the bowling ball. It is an action-reaction pair. So, the force exerted on the tennis ball by the bowling ball equals in magnitude to the force exerted by the tennis ball on the bowling ball although, they are in opposite directions. This, both experienced the same magnitude impulse.
Explanation:
potential energy =360800J
mass(m)=?
height (h)=25m
g=9.8m/s²
we have
potential energy =360800J
mgh=360800J
m×9.8×25=360800
m=360800/(9.8×25)=1472.653061kg
Using the principle of floatation.
u = w............(a)
Upthrust of fluid is equal to the weight of the object.
Let the volume of the wood be V.
The upthrust u, is related to the volume submerged in water, and that is 1/5 of it volume, that is (1/5)V = 0.2V
Formula for upthrust, u = vdg
where v = volume of fluid displaced
d = density of fluid
g = acceleration due to gravity
weight, w = mg
where m = mass
g = acceleration due to gravity
From (a)
u = w
vdg = mg Cancel out g
vd = m
The v is equal to 0.2V, which is the submerged volume. Notice that the small letter v is volume of fluid displaced, and capital V is the volume of the solid.
d is density of fluid which is water in this case, 1000 kg/m³
0.2V * 1000 = m
200V = m
Hence the mass of the object is 200V kg.
But Density of solid = Mass of solid / Volume of solid
= 200V / V
= 200 kg/m³
Density of solid = 200 kg/m³
It's definitely not B or C. There are things missing from A and D so we can't narrow it down any farther.