Answer: -33.3 * 10^9 C/m^2( nC/m^2)
Explanation: In order to solve this problem we have to use the gaussian law, the we have:
Eoutside =0 so teh Q inside==
the Q inside= 4.6 nC/m*L + σ *2*π*b*L where L is the large of the Gaussian surface and b the radius of the shell.
Then we simplify and get
σ= -4.6/(2*π*b)= -33.3 nC/m^2
No they say "Watch out it's the fuzz"
The answer is C) an electromagnetic wave
An electromagnetic wave, which includes electromagnetic radiation such as visible light, moves the fastest of all of the options listed by a significant margin, especially through space. In fact, light travelling through space is technically the theoretical limit of how fast something can travel.
Answer:
The angle between the electric field lines and the equipotential surface is 90 degree.
Explanation:
The equipotential surfaces are the surface on which the electric potential is same. The work done in moving a charge from one point to another on an equipotential surface is always zero.
The electric field lines are always perpendicular to the equipotential surface.
As

For equipotential surface, dV = 0 so

The dot product of two non zero vectors is zero, if they are perpendicular to each other.