The formula for half-life is:

Where A is the amount of iodine-131 initially and after 40 days, t is time, h is half-life of the isotope. Let's plug in our values to the equation:

Therefore, the patient has 0.625 grams of iodine-131 after 40 days.
Answer:
0.015m^3
Explanation:
1 m^3 = 1000 liters
x m^3 = 15 liters
Cross multiply
xm^3 x 1000 l = 15 l
Divide both sides by 1000
xm^3 x1000/1000 = 15/1000
xm^3 = 0.015m^3
Therefore 15 liter = 0.015m^3
Answer:
The 10 rules of badminton are as follows:
1. A game starts with a coin toss. Whoever wins the toss gets to decide whether they would serve or receive first OR what side of the court they want to be on. The side losing the toss shall then exercise the remaining choice.
2. At no time during the game should the player touch the net, with his racquet or his body.
3. The shuttlecock should not be carried on or come to rest on the racquet.
4. A player should not reach over the net to hit the shuttlecock.
5. A serve must carry cross court (diagonally) to be valid.
6. During the serve, a player should not touch any of the lines of the court, until the server strikes the shuttlecock. During the serve the shuttlecock should always be hit from below the waist.
7. A point is added to a player's score as and when he wins a rally.
8. A player wins a rally when he strikes the shuttlecock and it touches the floor of the opponent's side of the court or when the opponent commits a fault. The most common type of fault is when a player fails to hit the shuttlecock over the net or it lands outside the boundary of the court.
9. Each side can strike the shuttlecock only once before it passes over the net. Once hit, a player can't strike the shuttlecock in a new movement or shot.
10. The shuttlecock hitting the ceiling, is counted as a fault.
Explanation:
Answer:
The level of the root beer is dropping at a rate of 0.08603 cm/s.
Explanation:
The volume of the cone is :

Where, V is the volume of the cone
r is the radius of the cone
h is the height of the cone
The ratio of the radius and the height remains constant in overall the cone.
Thus, given that, r = d / 2 = 10 / 2 cm = 5 cm
h = 13 cm
r / h = 5 / 13
r = {5 / 13} h


Also differentiating the expression of volume w.r.t. time as:

Given:
= -4 cm³/sec (negative sign to show leaving)
h = 10 cm
So,



<u>The level of the root beer is dropping at a rate of 0.08603 cm/s.</u>
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.