As stated in the statement, we will apply energy conservation to solve this problem.
From this concept we know that the kinetic energy gained is equivalent to the potential energy lost and vice versa. Mathematically said equilibrium can be expressed as


Where,
m = mass
= initial and final velocity
g = Gravity
h = height
As the mass is tHe same and the final height is zero we have that the expression is now:






i dont know the answer of your question correctly
Answer:
5069.04 seconds
Explanation:
The parameter we are looking for is called the Orbital period of the Hubble Space Telescope.
It is given as:

where r = radius of orbit of Hubble Space Telescope
G = gravitational constant = 
M = Mass of earth
We are given that:
r = radius of the earth + distance of HST from earth
r = 
M = 
Therefore, T will be:


The orbital period of the Hubble Space Telescope is 5069.04 seconds.
Answer:
90J
Explanation:
The only time work is being done is when he lifts the box off the ground. Therefore, using the work formula, 2 x 45, you get 90J. Hope this helps someone.