Answer:
The answer is "Including all three studies of 0s to 2s, that shift in momentum is equal".
Explanation:
Its shift in momentum doesn't really depend on the magnitude of its cars since the forces or time are similar throughout all vehicles.
Let's look at the speed of the car

We use movies and find lips

The moment is defined by

The moment change

Let's replace the speeds in this equation

They see that shift is not directly proportional to the mass of cars since the force and time were the same across all cars.
Answer:
(d) 0.07 m/s
Explanation:
Given Data
Snowball mass m₁=0.15 kg
Ice skater mass m₂=65.0 kg
Snowball velocity v₁=32.0 m/s
To find
Velocity of Skater v₂=?
Solution
From law of conservation of momentum

So Option d is correct one
Acceleration=9.81m/s^2
initial velocity=0m/s
time=.28s
We have to find final velocity.
The equation we use is
Final velocity=initial velocity+acceleration x time
Vf=0m/s+(9.81m/s^2)(.28s)
Vf=2.7468m/s
We would round this to:
Vf (final velocity)=2.7m/s
Answer:
The frictional force is 
Explanation:
From the question we are told that
The coefficient of kinetic force is μk = 0.35
The normal force felt by the puck is 
Generally the frictional force that acts on the puck is mathematically represented as

=> 
=> 
Explanation:
In the given situation two forces are working. These are:
1) Electric force (acting in the downward direction) = qE
2) weight (acting in the downward direction) = mg
Therefore, work done by all the forces = change in kinetic energy
Hence,
It is known that the weight of electron is far less compared to electric force. Therefore, we can neglect the weight and the above equation will be as follows.

v = 
= 592999 m/s
Since, the electron is travelling downwards it means that it looses the potential energy.