Duracell batteries are an example of an electrochemical cell that is powered between the reaction of Magnesium and Zinc, occurring in basic conditions (alkaline battery). This type of reaction has a precise output of 1.5 volts, and looks like this:
Zn + 2MnO2 ➡️ ZnO + Mn2O3
It’s not rechargeable.
Golf Cart Batteries are an example of an electrochemical cell that is powered by the reaction between Lead and Sulfuric Acid (Lead-Acid battery). This type of reaction occurs on larger scales than an alkaline battery, and thus can generate a variety of powers depending on how many instruments are present within the battery. The reaction looks like this:
PbO2 + Pb + 2H2SO4 ➡️ 2PbSO4 + H2O
This is a rechargeable cell, but is rather prone to discharging by the environment and surroundings of the battery.
Answer:
what is the action and reaction ?
Explanation:
The relative motion of gaseous particles increases with increase in the temperature of the gas molecules just like the motion of popcorn in a popper increases when heat is applied to the popper.
<h3>What is kinetic theory of gas?</h3>
The kinetic theory of gases or matter states that matter consists of tiny particles which are constant motion, colliding with one another and with walls of the containing vessels.
Just like a popcorn in a popcorn popper pops when heat is applied to the popper, gases contained in a cylinder increases their speed when they acquire more kinetic energy as the temperature of the cylinder increases.
Thus, the motion of gas particles depends on the temperature of the containing vessel so also does the random motion of popcorn depends on the temperature of the popper.
Learn more about kinetic theory of gases here: brainly.com/question/11067389
#SPJ1
Answer:
Li has less mass and therefore less inertia, so he can change his motion more easily than Raj.
Explanation:
Inertia describes the resistance of an object to any change in its state of motion, and it depends on the mass of the object only. In particular:
- if an object has a large inertia (large mass), then it is more difficult to change its state of motion (i.e. to put it in motion, or to slow it down, or to change its direction of motion)
- if an object has small inertia (small mass), then it is more easy to change its state of motion
In this problem, Li has less mass than Raj, so he has less inertia, therefore he can change his motion more easily than Raj.
Cody ...
Everything on this page is solved with the SAME formula !
Distance = (speed) x (time) .
Before I get into how to solve each problem, we need to notice that
this whole sheet deals with speed, NOT velocity.
'Velocity' is speed AND THE DIRECTION OF THE MOTION.
Nothing on this page ever mentions direction, so there's no velocity
anywhere on the page.
Your teacher may not be happy if you talk about this on your homework,
but that's too bad. Just don't say "velocity" in any of your answers.
Say "speed", and if the teacher complains about that, then it's time to
let the teacher have it with both barrels.
1). Speed = (distance covered) / (time to cover the distance)
2). Speed = (distance covered) / (time to cover the distance)
3). Distance = (average speed of travel) x (time traveling at that speed)
4). Time to cover the distance = (distance) / (speed)
5). Car's speed = (distance the car covered) / (time the car took)
Sprinter speed = (distance the sprinter covered) / (time the sprinter took)
Calculate the car's speed.
Calculate the sprinter's speed.
... Look at the two speeds.
Decide which one is faster.
... Subtract the slower one from the faster one.
The difference is the answer to "by how much?" .
6). Distance = (speed) x (time spent moving at that speed)
7). Average speed = (TOTAL distance covered)
divided by
(time to cover the TOTAL distance).