Answer:
![\frac{\Delta L}{L} =5.37\times 10^{-4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20L%7D%7BL%7D%20%3D5.37%5Ctimes%2010%5E%7B-4%7D)
Explanation:
Given:
- cross sectional area of the wire,
![A=5.75\times 10^{-6}\ m^2](https://tex.z-dn.net/?f=A%3D5.75%5Ctimes%2010%5E%7B-6%7D%5C%20m%5E2)
- density of aluminium wire,
![\rho=2.7\times 10^3\ kg.m^{-3}](https://tex.z-dn.net/?f=%5Crho%3D2.7%5Ctimes%2010%5E3%5C%20kg.m%5E%7B-3%7D)
- young's modulus of the material,
![E=7\times 10^{10}\ N.m^{-2}](https://tex.z-dn.net/?f=E%3D7%5Ctimes%2010%5E%7B10%7D%5C%20N.m%5E%7B-2%7D)
- wave speed,
![v=118\ m.s^{-1}](https://tex.z-dn.net/?f=v%3D118%5C%20m.s%5E%7B-1%7D)
<u>We have mathematical expression for strain as:</u>
...............................(1)
and since, ![\sigma =\frac{T}{A}](https://tex.z-dn.net/?f=%5Csigma%20%3D%5Cfrac%7BT%7D%7BA%7D)
where, T = tension force in the wire
equation (1) becomes:
............................(2)
<u>Also velocity ofwave in tensed wire:</u>
...................................(3)
where:
linear mass density of the wire
![\therefore \mu=\rho \times A](https://tex.z-dn.net/?f=%5Ctherefore%20%5Cmu%3D%5Crho%20%5Ctimes%20A)
Now, equation (3) becomes
![v=\sqrt{\frac{T}{\rho \times A} }](https://tex.z-dn.net/?f=v%3D%5Csqrt%7B%5Cfrac%7BT%7D%7B%5Crho%20%5Ctimes%20A%7D%20%7D)
............................(4)
Using eq. (2) & (4) for tension T
![v^2.\rho \times A=A.E\times \frac{\Delta L}{L}](https://tex.z-dn.net/?f=v%5E2.%5Crho%20%5Ctimes%20A%3DA.E%5Ctimes%20%5Cfrac%7B%5CDelta%20L%7D%7BL%7D)
![\frac{\Delta L}{L} =\frac{v^2.\rho}{E}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20L%7D%7BL%7D%20%3D%5Cfrac%7Bv%5E2.%5Crho%7D%7BE%7D)
putting the respective values
![\frac{\Delta L}{L} =\frac{118^2\times 2.7\times 10^3}{7\times 10^{10}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20L%7D%7BL%7D%20%3D%5Cfrac%7B118%5E2%5Ctimes%202.7%5Ctimes%2010%5E3%7D%7B7%5Ctimes%2010%5E%7B10%7D%7D)
![\frac{\Delta L}{L} =5.37\times 10^{-4}](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20L%7D%7BL%7D%20%3D5.37%5Ctimes%2010%5E%7B-4%7D)