Answer: 37.981 m/s
Explanation:
This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:
<u>x-component:
</u>
(1)
Where:
is the point where the ball strikes ground horizontally
is the ball's initial speed
because we are told the ball is thrown horizontally
is the time since the ball is thrown until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the ball
is the final height of the ball (when it finally hits the ground)
is the acceleration due gravity
Knowing this, let's start by finding
from (2):
<u></u>
(3)
(4)
(5)
(6)
Then, we have to substitute (6) in (1):
(7)
And find
:
(8)
(9)
(10)
On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity
:
(11)
(12)
(13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.
However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).
Answer:
- Work done is maximum when the movement of object is in line and direction of force.
OR
- Work done is maximum, when displacement takes place along the direction of force.
- Work done is given by the equation
W = F.S
<em> W = F. S cos Θ</em>
<em>When cos Θ = 0° ; cos 0 = 1</em>
HEYA MATE
YOUR ANSWER IS <em><u>D.PLACE</u></em><em><u> </u></em><em><u>IT</u></em><em><u> </u></em><em><u>IN</u></em><em><u> </u></em><em><u>AN</u></em><em><u> </u></em><em><u>ELECTRI</u></em><em><u>C</u></em><em><u> </u></em><em><u>FIELD</u></em>
<em><u>BE</u></em><em><u>CAUSE</u></em><em><u> </u></em><em><u>IT </u></em><em><u>makes</u></em><em><u> sense you can use alternating current to remove magnetism</u></em>
Answer:
The magnitude of the gravitational force is 4.53 * 10 ^-7 N
Explanation:
Given that the magnitude of the gravitational force is F = GMm/r²
mass M = 850 kg
mass m = 2.0 kg
distance d = 1.0 m , r = 0.5 m
F = GMm/r²
Gravitational Constant G = 6.67 × 10^-11 Newtons kg-2 m2.
F = (6.67 × 10^-11 * 850 * 2)/0.5²
F = 0.00000045356 N
F = 4.53 * 10 ^-7 N
1. Most PE, because PE is directly proportional to distance (height)
Height: 100 meters
Speed: 0 mph
2. Most KE, because KE is directly proportional to speed
Height: 10 meters
Speed: 40 mph
3. Most TE, average KE
Height: 10 meters
Speed: 40 mph
4. The skater gains thermal energy as she goes down the slope, because the speed of the skater increases, so it increases the total kinetic energy of the particles, and makes them vibrate faster, resulting in a higher temperature.