Hello
The final light will be white. In fact, each color of the visible spectrum is an electromagnetic wave with its own specific frequency and wavelength. White, instead, does not have a specific frequency: it is the sum of all the different wavelengths of the visible spectrum. Therefore, when recombining the spectrum of the refracted light all the different frequencies recombine together, and their sum gives white light.
(edited)
Answer:
v = 2.94 m/s
Explanation:
When the spring is compressed, its potential energy is equal to (1/2)kx^2, where k is the spring constant and x is the distance compressed. At this point there is no kinetic energy due to there being no movement, meaning the net energy in the system is (1/2)kx^2.
Once the spring leaves the system, it will be moving at a constant velocity v, if friction is ignored. At this time, its kinetic energy will be (1/2)mv^2. It won't have any spring potential energy, making the net energy (1/2)mv^2.
Because of the conservation of energy, these two values can be set equal to each other, since energy will not be gained or lost while the spring is decompressing. That means
(1/2)kx^2 = (1/2)mv^2
kx^2 = mv^2
v^2 = (kx^2)/m
v = sqrt((kx^2)/m)
v = x * sqrt(k/m)
v = 0.122 * sqrt(125/0.215) <--- units converted to m and kg
v = 2.94 m/s
Answer:
Low-cost energy. Although building nuclear power plants has a high initial cost, it’s relatively cheap to produce energy from them and they have low operating costs.
Reliable. One of the biggest benefits of nuclear energy is that it is a reliable power generation source.
Zero carbon emissions. Nuclear power reactors do not produce any carbon emissions.
Promising future energy supply.
Answer:
481.76 J/mol
133.33 K
Explanation:
= Avogadro's number = 
Change in enthalpy is given by

Entropy is given by

Latent heat of fusion is given by

The latent heat of fusion is 481.76 J/mol
Melting point is given by

Melting occurs at 133.33 K