1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slavikrds [6]
2 years ago
12

A Force is applied onto a mass causing it to accelerate. If the same Force was applied to a SMALLER mass, what would happen to t

hat acceleration?
1. The acceleration would increase
2. The acceleration would stay the same
3. The acceleration would decrease
4. The acceleration would change direction
Physics
2 answers:
lakkis [162]2 years ago
5 0
Answer is number 1. the acceleration would increase
konstantin123 [22]2 years ago
3 0

Answer:

1. The acceleration would increase.

Explanation:

This is because according to Newton's law, the less mass there is, the more velocity.

You might be interested in
A brave but inadequate rugby player is being pushed backward by an opposing player who is exerting a force of 800 N on him. The
uysha [10]

Answer:

f = 692 N

Explanation:

given data:

f =800N

a =1.2 m s^{2}

m= 90 kg

from newton's second law

net force F_{net} =\sum F = F_1 +F_2 +..... = ma

therefore we have from above equationF_{net} = F -f = ma

ma =F - f

putting all value to get force of friction

1.2*90 = 800 - f

f = 692 N

8 0
3 years ago
In which condition the acceleration of a moving vehicle become zero​
Alekssandra [29.7K]

Explanation:

When,the vehicle has uniform velocity, it's acceleration becomes zero

4 0
2 years ago
A woman can row a boat at 5.60 km/h in still water. (a) If she is crossing a river where the current is 2.80 km/h, in what direc
katrin2010 [14]

Answer:

a) θ=210°, b) t=1.155hr, c) t=1.333hr, d) t=1.333hr, e) θ=180° (straight across), f) t=1hr.

Explanation:

So, the very first thing we nee to do when solving this problem is draw a diagram that represents it. In the attached picture I show a diagram for each part of this problem.

part a)

So, for her to move in a direction directly opposite her starting point, the x-component of her velocity must be de same as the velocity of the river in the opposite direction. We can use this fact to find the angle we need. If we analize the triangle I drew in the diagram, we can ses that:

cos \theta = \frac {V_{river}}{V_{boat}}

When solving for theta, we get that:

\theta =cos^{-1} ( \frac {V_{river}}{V_{boat}})

so now we can substitute the corresponding values:

\theta =cos^{-1} ( \frac {2.80km/hr}{5.60km/hr}})

Which yields:

\theta = 60^{o}

but we are measuring the angle relative to the line perpendicular to the river, positive if down the river. So we need to subtract the angle from 270° so we get:

θ=270°-60°=210°

part b)

for part b, we need to find what the y-component for the velocity of the boat is for an angle of 210° as shown in the problem, so we get that:

V_{y}=5.60km/hr*cos(210^{o})

V_{y}=-4.85km/hr

The woman will head in a negative 5.60km distance from one side to the other, so we get that the time it takes her to go to the other side of the river is:

t=\frac{y}{V_{y}}

t=\frac{5.60km}{4.85km/hr}=1.155hr

part c)

In order to find the time it takes her to travel 2.80km down and up the river, we need to find the velocities she will have in both directions. First, down stream:

V_{ds}=V_{river}+V{boat}

V_{ds}=2.80km/hr+5.60km/hr=8.40km/hr

and now up stream:

V_{us}=V_{boat}-V{river}

V_{us}=5.60km/hr-2.80km/hr=2.80km/hr

Once we got these two velocities we will now need to find the time to take each trip:

time down stream:

t_{ds}=\frac{x}{v_{ds}}

t_{ds}=\frac{2.80km}{8.40km/hr}=0.333hr

and the time up stream:

t_{us}=\frac{x}{v_{us}}

t_{us}=\frac{2.80km}{2,80km/hr}=1hr

so the total time will be:

t_{ds}+t_{us}=0.333hr+1hr=1.333hr

d) the time it takes the boat to go upstream and then downstream for the same distance is the same as the time we got on part c, since both times will be the same but they will come in different order, but their sum will be just the same:

t=1.333hr

e) For her to cross the river faster, she must row in a 180° direction (this is in a direction straight accross the river) that way she will use all her velocity to move across the river. (Even though she will move a certain distance horizontally and will not reach a point opposite to the starting point.)

f) In order to find the time it takes her to get to the other side, we need to divide the distance into the velocity of the boat.

t=\frac{d}{v_{boat}}

t=\frac{5.60km}{5.60km/hr}

so

t= 1hr

4 0
3 years ago
Read 2 more answers
An electron with a speed of 1.2 × 107 m/s moves horizontally into a region where a constant vertical force of 5.2 × 10-16 N acts
Aliun [14]

Answer: 0.642mm

Explanation: F= force = 5.2×10^-16 N,

v = velocity of electron = 1.2×10^7 m/s,

m = mass of electron = 9.11×10^-31 kg.

We will assume the motion of the object to be of a constant acceleration, hence newton's laws of motion is applicable.

Recall that f = ma.

Where a = acceleration

This acceleration of vertical because it occurred when the object deflected.

5.2×10^-16 = 9.11×10^-31 (ay)

ay = 5.2×10^-16 / 9.11×10^-31

ay = 5.71×10^14 m/s²

For the horizontal motion, x = vt

Where x = horizontal distance = 0.019m and v is the velocity = 1.2×10^7 m/s,

By substituting the parameters, we have that

0.019 = 1.27×10^7 × t

t = 0.019 / 1.27 × 10^7

t = 1.5×10^-9 s

The vertical distance (y) is gotten by using the formulae below

y = ut + at²/2

but u = 0

y = at²/2

y = 5.71×10^14 × (1.5×10^-9)²/2

y = 0.00128475/2

y = 0.000642m = 0.642mm

7 0
2 years ago
Read 2 more answers
In which situations is elastic potential energy present? Check all that apply. A bow is drawn back from its equilibrium position
Simora [160]
1,4,6
a bow is drawn back
a gun is loaded w/ a dart
a bungee cord is stretched
6 0
3 years ago
Read 2 more answers
Other questions:
  • A man has a mass of 110 kg. What is his weight?<br> A. 110N<br> B. 1325 N<br> C. 559 N<br> D. 1078 N
    13·1 answer
  • The electric potential in a certain region is given by the equation V(x,y,z) = 3αx2y3 - 2γx2y4z2 where the potential is in volts
    11·1 answer
  • Which element is most likely to carry electric current easily?
    15·1 answer
  • 85POINTS ASAP!!!!!!!!!!!!!!
    15·2 answers
  • Why is net force a vector sum A.All forces have direction and magnitude B.Forces can only be attractive C.All forces are contact
    8·1 answer
  • 11. Newton's Third Law of Motion relates to action and reaction. Which of the following scenarios accurately names the
    11·1 answer
  • The interference between the two wave pulses shown above will
    13·1 answer
  • Which is an example of a chemical change?
    8·1 answer
  • Calculate the mass of a truck traveling at 30.56 m/s that has a starting momentum of 77,000 kg*m/s
    10·1 answer
  • *example of previous incorrect/correct answer on similar question) Inside a vacuum tube, an electron is in the presence of a uni
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!