Answer:
2.93 m (which agrees with answer "C" on the list)
Explanation:
Recall that the speed of the wave equals the product of the wave's length times its frequency. Therefore, the wavelength is going to be the quotient of the speed of the signal divided its frequency:
Wavelength = 2.997 10^8 / 1.023 10^8 = 2.93 m
Answer:
v = 134.06 m/s
Explanation:
Given that,
Radius of a circular track is 1,835 m
Time required to complete one lap around a perfectly circular track is 86 seconds
We need to find the car's velocity. Velocity is equal to,
v=d/t
On circular path,

So, car's velocity is 134.06 m/s.
Longer the air column is the more harmonics are created. due to the longer column the waves have more space to bounce off of the sides of the column to create more harmonics.
Answer:
Explanation:
We shall apply law of conservation of momentum to know the Speed of northward moving vehicle before collision to check the veracity of driver's statement .
Let v be the velocity of composite mass after collision
Applying law of conservation of momentum in north direction
m v₂ = 2m v sin55.08
Applying law of conservation of momentum in east direction
m x 13 = 2m v cos55.08
Dividing these two equations
v₂ / 13 = tan55.08
v₂ = 13 tan55.08
= 18.62 m/s
= (18.62 x60 x 60) / 1000
= 67 km/h
= 67 x 5/8 mi/h
= 42 mi/h
So he is lieing.
Answer:
They sound tinkling in solid hard like metal.
They can vibrate soft surface
I could just Ans this