1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
meriva
3 years ago
8

A block of wood 3 cm on each side has a mass of 27 g. what is the density of the block

Physics
1 answer:
butalik [34]3 years ago
7 0
Density: Mass/Volume

Volume: 3 x 3 x 3cm
= 27cm

27/27
= 1g/cm^3
You might be interested in
What can I do to increase range of motion in a joint
Phantasy [73]

Answer:

Damian here! (ノ◕ヮ◕)ノ*:・゚✧

Stretching is used to improve range-of-motion (ROM) of a joint, but why? The most common reason is that the joint ROM is limited and is somehow affecting performance of a desired activity. Stretching is also used as a preventative measure.

Explanation:hope this helps? :))

8 0
3 years ago
A car at the top of a ramp starts from rest and rolls to the bottom of the ramp, achieving a certain final speed. If you instead
zimovet [89]

Answer:

It must be 4 times high.

Explanation:

  • Assuming that the car can be treated as a point mass, and that the ramp is frictionless, the total mechanical energy must be conserved.
  • This means, that at any time, the following must be true:
  • ΔK (change in kinetic energy) = ΔU (change in gravitational potential energy)

⇒      m*g*h = \frac{1}{2} * m*v^{2}

  • Let's call v₁, to the final speed of the car, and h₁ to the height of the ramp.

       So, at the bottom of the ramp, all the gravitational potential energy

      must be equal to the kinetic energy of the car (Defining the bottom of

      the ramp as our zero reference for the gravitational potential energy):

       m*g*h_{1}  = \frac{1}{2} * m*v_{1} ^{2}  (1)

  • Now, let's do v₂ = 2* v₁
  • Replacing in (1) we get:

        m*g*h_{2}  = \frac{1}{2} * m*(2*v_{1}) ^{2} (2)

  • Dividing (2) by (1), and rearranging terms, we get:
  • h₂ = 4* h₁
8 0
3 years ago
Calculate the Schwarzschild radius (in kilometers) for each of the following.1.) A 1 ×108MSun black hole in the center of a quas
Westkost [7]

Answer:

(I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

Explanation:

Given that,

Mass of black hole m= 1\times10^{8} M_{sun}

(I). We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Where, G = gravitational constant

M = mass

c = speed of light

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times1\times10^{8}\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=2.94\times10^{8}\ km

(II). Mass of block hole m= 6 M_{sun}

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times6\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=17.7\ km

(III). Mass of block hole m= mass of moon

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times7.35\times10^{22}}{(3\times10^{8})^2}

R_{g}=1.1\times10^{-7}\ km

(IV). Mass = 50 kg

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times50}{(3\times10^{8})^2}

R_{g}=7.4\times10^{-29}\ km

Hence, (I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

8 0
3 years ago
A 5.00 kg rock whose density is 4300 kg/m3 is suspended by a string such that half of the rock's volume is under water. You may
12345 [234]

Answer:

The tension on the string is  T  =  43.302 \ N

Explanation:

From the question we are told that

    The mass of the rock is m_r = 5.00 \ kg =  5000 \ g

       The density of the rock is \rho  =  4300 \ kg/m^3 =  4.3 g/dm^3

       

Generally the volume of the rock is mathematically evaluated as

          V    =  \frac{m_r}{\rho}

substituting values

        V    =  \frac{5000}{4.3}

       V    =  1162.7 \  dm^3

The volume of the rock immersed in water is

      V_w = \frac{V}{2}  

substituting values

     V_w = \frac{1162.7 }{2}

     V_w = 581.4 \ dm^3

mass of water been displaced by the this volume is

     m_w  = V_w     According to Archimedes principle

=>   m_w =  581.4 \ g

     m_w =  0.5814 \ kg

The weight of the water displace is  

      W _w =  m_w  * g

      W _w =  0.5814  * 9.8

      W _w = 5.698 \ N

The actual weight of the rock is  

      W_r  =  m_r * g

     W_r  =  5.0 *  9.8

     W_r  =  49.0 \ N

The tension on the string is

       T  = W_r - W_w

substituting values

       T  = 49.0 -  5.698

       T  =  43.302 \ N

4 0
3 years ago
Two spherical conductors are separated by a distance much larger than either of their radii. Sphere A has a radius of 11.5 cm an
bonufazy [111]

Explanation:

As the given spheres are connected by a thin wire so, the potential on the spheres are the same.

          \frac{q_{1}}{r_{1}} = \frac{q_{2}}{r_{2}} ......... (1)

Hence, total charge will be as follows.

              q_{1} + q_{2} = Q = -95.5 nC .......... (2)

Using the above two equations, the final equation will be as follows.

          q_{2} = \frac{Qr_{2}}{r_{1} + r_{2}}

and,    q_{1} = \frac{Qr_{1}}{r_{1} + r_{2}}

Hence, we will calculate the charge on sphere B after the equilibrium is reached as follows.

          q_{2} = \frac{Qr_{2}}{r_{1} + r_{2}}

                     = \frac{-95.5 \times 74.4 cm}{(11.5 + 74.4) cm}

                     = 82.714 nC

Thus, we can conclude that the charge on sphere B after equilibrium has been reached is 82.714 nC.

                       

5 0
3 years ago
Other questions:
  • A car is traveling at 10 m/s starts to decelerate steadily. It comes to a complete stop in 20 seconds what is it’s acceleration
    5·2 answers
  • When one object pushes or pulls another object the first object is
    8·1 answer
  • Surface winds on Earth are primarily caused by differences in
    12·2 answers
  • A bowler lifts his bowling ball a distance of 2 meters using 50 joules of energy. If, on Earth, a 1.0 kilograms mass weighs 9.8
    9·2 answers
  • A hollow sphere of negligible mass and radius R is completely filled with a liquid so that its density is rho. You now enlarge t
    13·1 answer
  • A thin flake of mica ( n = 1.58 ) is used to cover one slit ofa double slit interference arrangement. The central point on thevi
    9·1 answer
  • Write a paragraph that explains how one gene can be responsible for many traits, and how how many genes can be responsible for o
    11·1 answer
  • If 3.2*10^20 electrons pass through a wire in 4s, what would be the electrical current in the wire?
    7·1 answer
  • Question 25
    10·1 answer
  • What type of circuits have no electricity flowing through them? *
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!