Answer:
The momentum of the ball is 500 kg·m/s
Explanation:
The momentum is given by Mass × Velocity
The given parameters are;
The mass of the box = 10 kg
The velocity by which the box is sliding = 50 m/s
Therefore, the momentum of the ball is given as follows;
The momentum of the ball = 10 kg × 50 m/s = 500 kg·m/s
The momentum of the ball = 500 kg·m/s
Answer:
Gay-Lussac’s law, because as the pressure increases, the temperature increases
Explanation:
First of all, we can notice that the volume of the tank is fixed: this means that the volume of the air inside is also fixed.
This means that in this situation we can apply Gay-Lussac's law, which states that:
"for a gas kept at constant volume, the pressure of the gas is proportional to the absolute temperature of the gas".
Mathematically:

where p is the pressure in Pascal and T is the temperature in Kelvin.
In this case, the tank is filled with air: this means that the pressure of the gas inside the tank increases. And therefore, according to Gay-Lussac's law, the temperature will increase proportionally, and this explains why the tank gets hot.
The formula for the energy in a capacitor , u in terms of q and c is q²/2c
<h3>What is the energy of a capacitor?</h3>
The energy of a capacitor u = 1/2qv where
- q = charge on capacitor and
- v = voltage across capacitor.
<h3>What is the capacitance of a capacitor?</h3>
Also, the capacitance of a capacitor c = q/v where
- q = charge on capacitor and
- v = voltage across capacitor.
So, v = q/c
<h3>
The formula for energy of the capacitor in terms of q and c</h3>
Substituting v into u, we have
u = 1/2qv
= 1/2q(q/c)
= q²/2c
So, the formula for the energy in a capacitor , u in terms of q and c is q²/2c
Learn more about energy in a capacitor here:
brainly.com/question/10705986
#SPJ12
No they say "Watch out it's the fuzz"
Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s