Answer: Option (b) is the correct answer.
Explanation:
State of a substance changes when heat is provided to a substance.
This is because when we heat water then intermoleclar forces present within its molecules tend to break down. Due to this molecules start to move away from each other.
As a result, kinetic energy of molecules increases and they collide rapidly. Hence, solid state of water changes into liquid state and upon excessive heating liquid state of water changes into vapor state.
Thus, we conclude that temperature of water needs to change in order to change its state of matter.
Answer:
I think it would be:
NaCO3 (s)-->Na2O (s) + CO2 (g)
If anything isn’t obvious, don’t hesitate to ask me
Check the attached photo out...
Answer:
The answer is "Option B".
Explanation:


![\to C \ CH_3COONa = \frac{(0.01\ mol + 5 \ E-4\ mol)}{(0.105\ L )}\\\\\to C \ CH_3COONa = 0.1 \ M\\\\\therefore Ka = ([H_3O^{+}]\times \frac{(0.1 + [H_3O^+]))}{(0.0905 - [H_3O^+])} = 1.75\ E-5\\\\\to 0.1[H_3O^+] + [H_3O^+]^2 = (1.75 E-5)\times (0.0905 - [H_3O^+])\\\\](https://tex.z-dn.net/?f=%5Cto%20C%20%5C%20CH_3COONa%20%3D%20%20%5Cfrac%7B%280.01%5C%20%20mol%20%2B%205%20%5C%20E-4%5C%20%20mol%29%7D%7B%280.105%5C%20L%20%29%7D%5C%5C%5C%5C%5Cto%20C%20%5C%20CH_3COONa%20%3D%200.1%20%5C%20M%5C%5C%5C%5C%5Ctherefore%20Ka%20%3D%20%28%5BH_3O%5E%7B%2B%7D%5D%5Ctimes%20%5Cfrac%7B%280.1%20%2B%20%5BH_3O%5E%2B%5D%29%29%7D%7B%280.0905%20-%20%5BH_3O%5E%2B%5D%29%7D%20%3D%201.75%5C%20E-5%5C%5C%5C%5C%5Cto%200.1%5BH_3O%5E%2B%5D%20%2B%20%5BH_3O%5E%2B%5D%5E2%20%3D%20%281.75%20E-5%29%5Ctimes%20%280.0905%20-%20%5BH_3O%5E%2B%5D%29%5C%5C%5C%5C)
![\to [H_3O^+]^2 \ 0.1[H_3O^+] = 1.584\ E-6 - 1.75\ E-5[H_3O^+]\\\\\to [H_3O^+]^2 + 0.1000175[H_3O^+] - 1.584 \ E-6 = 0\\\\\to [H_3O^+] = 1.5835\ E-5 \ M\\\\\therefore pH = - \log [H_3O^+]\\\\\to pH = - \log (1.5835 \ E-5)\\\\ \to pH = 4.8004 > 4.7](https://tex.z-dn.net/?f=%5Cto%20%5BH_3O%5E%2B%5D%5E2%20%5C%200.1%5BH_3O%5E%2B%5D%20%3D%201.584%5C%20%20E-6%20-%201.75%5C%20%20E-5%5BH_3O%5E%2B%5D%5C%5C%5C%5C%5Cto%20%5BH_3O%5E%2B%5D%5E2%20%2B%200.1000175%5BH_3O%5E%2B%5D%20-%201.584%20%5C%20E-6%20%3D%200%5C%5C%5C%5C%5Cto%20%20%5BH_3O%5E%2B%5D%20%3D%201.5835%5C%20%20E-5%20%5C%20M%5C%5C%5C%5C%5Ctherefore%20pH%20%3D%20-%20%5Clog%20%5BH_3O%5E%2B%5D%5C%5C%5C%5C%5Cto%20%20pH%20%3D%20-%20%5Clog%20%281.5835%20%5C%20E-5%29%5C%5C%5C%5C%20%5Cto%20pH%20%3D%204.8004%20%3E%204.7)
The best example of a heterogenous mixture is sand at the beach. This is a good example as the sand and water do not chemically come together to create a new mixture and the composition of both elements stay constant