Answer:
-1071 Joules
Explanation:
The Joule was introduced as the SI unit for energy in 1925. One calorie is equal to approximately 4.184 joules(J). This is a conversion factor that we can write two ways:
(1cal/4.184J) or (4.184J/1cal)
(265 cal)*(4.184J/1cal) = 1071 J
Since the energy is leaving the system, it should be written with a minus sign: -1071J
Answer:
Second one
Explanation:
I think it's the second cause there's no energy w/o heat. So it's the second.
The half cell in which the electrode gains electrons is where reduction occurs, and the half cell in which the electrode loses electrons is where oxidation occurs.
<h3><u>What is a Galvanic cell ?</u></h3>
Voltaic or galvanic cells are electrochemical devices that use spontaneous oxidation-reduction events to generate electricity. In order to balance the overall equation and highlight the actual chemical changes, it is frequently advantageous to divide the oxidation-reduction reactions into half-reactions while constructing the equations.
Two half-cells make up most electrochemical cells. The half-cells allow electricity to pass via an external wire by separating the oxidation half-reaction from the reduction half-reaction.
<h3><u>
Oxidation:</u></h3>
The anode is located in one half-cell, which is often shown on the left side of a figure. On the anode, oxidation takes place. In the opposite half-cell, the anode and cathode are linked.
<h3><u>Reduction:</u></h3>
The second half-cell, cathode, which is frequently displayed on a figure's right side. The cathode is where reduction happens. The circuit is completed and current can flow by adding a salt bridge.
To know more about processes in Galvanic cell, refer to:
brainly.com/question/13031093
#SPJ4
This question comes with four answer choices:
<span>A. H2O + H2O ⇄ 2H2 + O2
B. H2O + H2O⇄ H2O2 + H2
C. H2O + H2O ⇄ 4H+ + 2O2-
D. H2O + H2O ⇄ H3O+ + OH-
Answer: option </span><span>D. H2O + H2O ⇄ H3O+ + OH-
(the +sign next to H3O is a superscript, as well as the - sing next to OH)
Explanation:
The self-ionization of water, or autodissociation, produces the two ions H3O(+) and OH(-). The presence of ions is what explain the electrical conductivity of pure water.
</span><span>In this, one molecule of H2O loses a proton (H+) (deprotonates) to become a hydroxide ion, OH−. Then, he <span>hydrogen ion, H+</span>, immediately protonates another water molecule to form hydronium, H3O+.
</span>
Answer:
use the rule of speed
Explanation:
speed =distance over time