To determine the upper bond
Ec(u) = EmVm + EpVp
Em is the elastic modulus of cobalt.
E₁ is the elastic modulus of the particulate
Vm is the volume fraction of cobalt
Vp is the volume fraction of particulate
substitute
Ec(u) = 200 (Vm) + 700 (Vp)
To determine the lower bound
Ec (l) = EmEp/VmEp+ VpEm
Substitute
Ec (l) = 200(700)/Vm(700) + Vp (200)
Ec (l) = 1400/7Vm+2Vp
C. rusting is the correct answer
Nonessential amino acids can be made by the body, while essential amino acids cannot be made by the body so you must get them from your diet.
Nonessential acids : glutamine, proline, glycine etc
Essential acids: lysine, leucine etc.
Explanation:
Initial Pressure = 24 lb in-2
Initial Temperature = –5 o C = 268 K (Converting to kelvin temperature)
Final Pressure = ?
Final Temperature = 35 o C = 308 K (Converting to kelvin temperature)
No Change in Volume.
From Gay Lusaac's law; pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
P1T1 = P2T2
P2 = P1T1 / T2
P2 = 24 * 268 / 308 = 20.88 lb in-2
There would be a drop in pressure as the temperature increases. Appropriate measures should b taken by regularly gauging the pressure of the tire.
Answer:The product formed on reaction with hydroxide ion as nucleophile is 2R-hexane-2-ol.
The product formed on reaction with water would be a 50:50 mixture of
2S-hexane-2-ol. and 2R-hexane-2-ol.
Explanation:
2S-iodohexane on reactiong with hydroxide ion would undergo SN² substitution reaction that is substitution bimolecular. Hydroxide ion has a negative charge and hence it is a quite good nucleophile .
The rate of a SN² reaction depends on both the substrate and nucleophile . Here the substrate is a secondary carbon center having Iodine as a leaving group.SN² reaction takes place here as hydroxide ion is a good nucleophile and it can attack the secondary carbon center from the back side leading to the formation of 2R-hexane-2-ol.
In a SN² reaction since the the nucleophile attacks from the back-side so the product formation takes place with the inversion of configuration.
When the same substrate S-2-iodohexane undergoes a substitution reaction with water as a nucleophile then the reaction occurs through (SN¹) substitution nucleophilic unimolecular mechanism .
The rate of a SN¹ reaction depends only on the nature of substrate and is independent of the nature of nucleophile.
The SN¹ reaction is a 2 step reaction , in the first step leaving group leaves leading to the formation of a carbocation and once the carbocation is formed then any weaker nucleophile or even solvent molecules can attack leading the formation of products.
In this case a secondary carbocation would be generated in the first step and then water will attack this carbocation to form the product in the second step.
The product formed on using water as a nucleophile would be a racemic mixture of R and S isomers of hexane -2-ol in 50:50 ratio. The two products formed would be 2R-hexane-2-ol and 2S-hexane-2-ol.
Kindly refer the attachment for reaction mechanism and structure of products.