The graph of the plot of acceleration against force is a straight line graph. Option B
<h3>What is the relationship between force and acceleration?</h3>
From the Newton's second law of motion we can derive that; F = ma
F= mass
a = acceleration.
This implies that the acceleration and the mass of a body has a linear relationship. We could then assert that the force is directly proportional to the acceleration with the mass being the constant in the equation.
As such, the force that is imparted to the body is what determines the acceleration and the both increases or decreases linearly. Thus the graph of the plot of acceleration against force is a straight line graph. Option B
Learn more about acceleration:brainly.com/question/12550364?
#SPJ1
At the first reaction when 2HBr(g) ⇄ H2(g) + Br2(g)
So Kc = [H2] [Br2] / [HBr]^2
7.04X10^-2 = [H2][Br] / [HBr]^2
at the second reaction when 1/2 H2(g) + 1/2 Br2 (g) ⇄ HBr
Its Kc value will = [HBr] / [H2]^1/2*[Br2]^1/2
we will make the first formula of Kc upside down:
1/7.04X10^-2 = [HBr]^2/[H2][Br2]
and by taking the square root:
∴ √(1/7.04X10^-2)= [HBr] / [H2]^1/2*[Br]^1/2
∴ Kc for the second reaction = √(1/7.04X10^-2) = 3.769
<u>Answer:</u> The molality of naphthalene solution is 0.499 m
<u>Explanation:</u>
Density is defined as the ratio of mass and volume of a substance.
......(1)
Given values:
Volume of carbon tetrachloride = 500 mL
Density of carbon tetrachloride = 1.60 g/mL
Putting values in equation 1, we get:

Molality is defined as the amount of solute expressed in the number of moles present per kilogram of solvent. The units of molarity are mol/kg. The formula used to calculate molarity:
.....(2)
Given values:
Given mass of naphthalene = 51.2 g
Molar mass of naphthalene = 128.17 g/mol
Mass of solvent = 800 g
Putting values in equation 2, we get:

Hence, the molality of naphthalene solution is 0.499 m
Answer:
2.9 g/cm³
Explanation:
From the question given above, the following data were obtained:
Mass = 236.376 g
Volume = 81.5 cm³
Density =?
Density can be defined as the mass of a substance per unit volume of the substance. It can be expressed mathematically as:
Density = mass /volume
With the above formula, we can obtain the density of the object as shown below:
Mass = 236.376 g
Volume = 81.5 cm³
Density =?
Density = mass /volume
Density = 236.376 / 81.5
Density = 2.9 g/cm³
Thus, the density of the object is 2.9 g/cm³