Answer:
<em>a. 4.21 moles</em>
<em>b. 478.6 m/s</em>
<em>c. 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
Explanation:
Volume of container = 100.0 L
Temperature = 293 K
pressure = 1 atm = 1.01325 bar
number of moles n = ?
using the gas equation PV = nRT
n = PV/RT
R = 0.08206 L-atm-

Therefore,
n = (1.01325 x 100)/(0.08206 x 293)
n = 101.325/24.04 = <em>4.21 moles</em>
The equation for root mean square velocity is
Vrms = 
R = 8.314 J/mol-K
where M is the molar mass of oxygen gas = 31.9 g/mol = 0.0319 kg/mol
Vrms =
= <em>478.6 m/s</em>
<em>For Nitrogen in thermal equilibrium with the oxygen, the root mean square velocity of the nitrogen will be proportional to the root mean square velocity of the oxygen by the relationship</em>
= 
where
Voxy = root mean square velocity of oxygen = 478.6 m/s
Vnit = root mean square velocity of nitrogen = ?
Moxy = Molar mass of oxygen = 31.9 g/mol
Mnit = Molar mass of nitrogen = 14.00 g/mol
= 
= 0.66
Vnit = 0.66 x 478.6 = <em>315.876 m/s</em>
<em>the root mean square velocity of the oxygen gas is </em>
<em>478.6/315.876 = 1.5 times the root mean square velocity of the nitrogen gas outside the tank</em>
The slope of a speed-time graph is the acceleration represented by the graph.
All other parts of this question refer to a lab experiment or exercise
where I was not present, but Zeesam16 was. Therefore I have no data
with which to answer the rest of the question, and hope that Zeesam can
handle it.
The molecular geometry of both F2 and HF is linear.There are only two atoms which are covalently bonded and thus, the bonding scheme with the atoms looks like this;
F --- F
H---F
So, both are linear.
Answer:
The magnetic field at the center of the solenoid is 2.1 × 10⁻³ T
Explanation:
The magnetic field B at the center of the solenoid is given by
B = μ₀ni where μ₀ = permeability of free space = 4π × 10⁻⁷H/m, n = number of turns per unit length of the solenoid = 1100 turns per meter and i = current in the solenoid = 1.5 A.
So B = μ₀ni
= 4π × 10⁻⁷H/m × 1100 × 1.5 A
= 4π × 10⁻⁷H/m × 1650 A-turns/m
= 20734.5 × 10⁻⁷T
= 2.07345 × 10⁻³ T
≅ 2.1 × 10⁻³ T
So the magnetic field at the center of the solenoid is 2.1 × 10⁻³ T
Given:
Initial speed of the motorcycle (u) = 35 m/s
Final speed of the motorcycle (v) = 0 m/s (Complete Stop)
Maximum deceleration of the motorcycle (a) = -1.2 m/s²
Required Equation:

Answer:
By substituting values in the equation, we get:

Time taken by motorcycle to come to a complete stop (t) = 29.167 s