Explanation:
We'll call the radius r and the diameter d:
We also assume that the riders are at a distance r = d/2 = 7m from the center of the wheel.
The period of the wheel is 24s. The tangent velocity of the wheel (and the riders) will be: (2pi/T)*r = 0.8 m/s (circa).
It means that in 3 minutes (180 seconds) they'll run 0.8 m/s * 180s = 144m.
Hopefully I understood the question. If yes, that's the answer.
Answer:
6s
Explanation:
Assume it is dropped from rest and the gravitational acceleration is 10
By the equation of motion under constant acceleration:

180 = (0)t+10(t^2)/2
t = 6 or -6 (rejected)
t = 6 s
Answer:
x=2d
Explanation:
initial stretch in the spring is d
so using Hook's law
at equilibrium position
k×d=mg
where k= spring constant
m= mass of fish
g= acceleration due to gravity.
d=mg/k ................ (1)
in second case by energy conservation
1/2 kx^2=mgx
x=2mg/k
using equation 1
x=2d
Ruff's image is 50m behind the mirror surface and the image is also 3m tall.
This is because it is a plane mirror.