Assume that an ingot of copper has a mass of 9.1 kg or 9100 g.
The cross-sectional area of the copper wire with diameter of 6.5 mm (or 0.65 cm) is
A = (π/4)*(0.65 cm)² = 0.3318 cm²
The density of copper is given as 8.94 g/cm³.
If the length of copper wire is L cm, then
(0.3318 cm²)*(L cm)*(8.94 g/cm³) = 9100 g
L = 9100/(0.3318*8.94) = 3.0678 x 10³ cm
Note that
1 cm = 1/2.54 in = 1/2.54 in = 0.3937 in
= 0.3937/12 = 0.03281 ft
Therefore
L = (3.0678 x 10³ cm)*(0.03281 ft/cm) = 100.65 ft
Answer: 100.65 ft
Answer: option D) 42.4 N
The weight of the frame is balanced by the vertical component of tension.
W = T sin θ + T sin θ = 2 T sin θ
The tension in each cable is T = 30 N
Angle made by the cables with the horizontal, θ = 45°
⇒ W = 2×30 N × sin 45° = 2 × 30 N × 0.707 = 42.4 N
Hence, the weight of the frame is 42.4 N. Correct option is D.
Answer:
es un motor de combustión interna con encendido por chispa.
Fruit flies prefer mates adapted to the same food source.
Answer:
t = 12,105.96 sec
Explanation:
Given data:
weight of spacecraft is 2000 kg
circular orbit distance to saturn = 180 km
specific impulse = 300 sec
saturn orbit around the sun R_2 = 1.43 *10^9 km
earth orbit around the sun R_1= 149.6 * 10^ 6 km
time required for the mission is given as t
![t = \frac{2\pi}{\sqrt{\mu_sun}} [\frac{1}{2}(R_1 + R_2)]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%5Cmu_sun%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28R_1%20%2B%20R_2%29%5D%5E%7B3%2F2%7D)
where
is gravitational parameter of sun = 1.32712 x 10^20 m^3 s^2.![t = \frac{2\pi}{\sqrt{ 1.32712 x 10^{20}}} [\frac{1}{2}(149.6 * 10^ 6 +1.43 *10^9 )]^{3/2}](https://tex.z-dn.net/?f=t%20%3D%20%5Cfrac%7B2%5Cpi%7D%7B%5Csqrt%7B%201.32712%20x%2010%5E%7B20%7D%7D%7D%20%5B%5Cfrac%7B1%7D%7B2%7D%28149.6%20%2A%2010%5E%206%20%2B1.43%20%2A10%5E9%20%29%5D%5E%7B3%2F2%7D)
t = 12,105.96 sec