1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vlabodo [156]
3 years ago
13

Two satellites, X and Y, are orbiting Earth. Satellite X is 1.2 × 106 m from Earth, and Satellite Y is 1.9 × 105 m from Earth. W

hich best compares the satellites? Satellite X has a greater period and a faster tangential speed than Satellite Y. Satellite X has a greater period and a slower tangential speed than Satellite Y. Satellite X has a shorter period and a faster tangential speed than Satellite Y. Satellite X has a shorter period and a slower tangential speed than Satellite Y.
Physics
2 answers:
Mashcka [7]3 years ago
8 0

Answer:

B

Explanation:

jenyasd209 [6]3 years ago
4 0

Answer: Satellite X has a greater period and a slower tangential speed than Satellite Y

Explanation:

According to Kepler’s Third Law of Planetary motion “The square of the orbital period of a planet is proportional to the cube of the semi-major axis (size) of its orbit”.

T^{2}=\frac{4\pi^{2}}{GM}r^{3}    (1)

Where;

G=6.674(10)^{-11}\frac{m^{3}}{kgs^{2}} is the Gravitational Constant

M=5.972(10)^{24}kg is the mass of the Earth

r  is the semimajor axis of the orbit each satellite describes around Earth (assuming it is a circular orbit, the semimajor axis is equal to the radius of the orbit)

So for satellite X, the orbital period T_{X} is:

T_{X}^{2}=\frac{4\pi^{2}}{GM}r_{X}^{3}    (2)

Where r_{X}=1.2(10)^{6}m

T_{X}^{2}=\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}(1.2(10)^{6}m)^{3}    (3)

T_{X}=413.712 s    (4)

For satellite Y, the orbital period T_{Y} is:

T_{Y}^{2}=\frac{4\pi^{2}}{GM}r_{Y}^{3}    (5)

Where r_{Y}=1.9(10)^{5}m

T_{Y}^{2}=\frac{4\pi^{2}}{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}(1.9(10)^{5}m)^{3}    (6)

T_{Y}=26.064 s    (7)

This means T_{X}>T_{Y}

Now let's calculate the tangential speed for both satellites:

<u>For Satellite X:</u>

V_{X}=\sqrt{\frac{GM}{r_{X}}} (8)

V_{X}=\sqrt{\frac{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}{1.2(10)^{6}m}}

V_{X}=18224.783 m/s (9)

<u>For Satellite Y:</u>

V_{Y}=\sqrt{\frac{GM}{r_{Y}}} (10)

V_{Y}=\sqrt{\frac{(6.674(10)^{-11}\frac{m^{3}}{kgs^{2}})(5.972(10)^{24}kg)}{1.9(10)^{5}m}}

V_{Y}= 45801.13 m/s (11)

This means V_{Y}>V_{X}

Therefore:

Satellite X has a greater period and a slower tangential speed than Satellite Y

You might be interested in
If a scientist gets unexpected results during the first trial of an experiment,
My name is Ann [436]

Answer:

A. Repeat the experiment to be sure the results are valid.

5 0
1 year ago
Read 2 more answers
A block slides down a frictionless plane that makes an angle of 24.0° with the horizontal. What is the
irga5000 [103]

Answer:

F = m g sin theta      force accelerating block

m a = m g sin theta

a = 9.8 sin 24 = 3.99 m/sec^2

7 0
2 years ago
An amusement park ride called the Rotor debuted in 1955 in Germany. Passengers stand in the cylindrical drum of the Rotor as it
steposvetlana [31]

Answer:

μs = 0.36

Explanation:

  • While the drum is rotating, the riders, in order to keep in a circular movement, are accelerated towards the center of the drum.
  • This acceleration is produced by the centripetal force.
  • Now, this force is not a different type of force, is the net force acting on the riders in this direction.
  • Since the riders have their backs against the wall, and the normal force between the riders and the wall is perpendicular to the wall and aiming out of it, it is easily seen that this normal force is the same centripetal force.
  • In the vertical direction, we have two forces acting on the riders: the force of gravity (which we call weight) downward, and the friction force, that will oppose to the relative movement between the riders and the wall, going upward.
  • When this force be equal to the weight, it will have the maximum possible value, which can be written as follows:

       F_{frmax} = \mu_{s}* F_{n}  = m * g  (1)

  • where μs= coefficient of static friction (our unknown)
  • As  we have already said Fn = Fc.
  • The value of the centripetal force, is related with the angular velocity ω and the radius of the drum r, as follows:

      F_{n} = m* \omega^{2} * r  (2)

  • Replacing (2) in (1), simplifying and rearranging terms, we can solve for μs, as follows:

       \mu_{s} = \frac{g}{\omega^{2} r}  (3)

  • Prior to replace ω for its value, is convenient to convert it from rev/min to rad/sec, as follows:

       \omega = 26.0 \frac{rev}{min} * \frac{1min}{60 sec} *\frac{2*\pi rad }{1 rev} = 2.72 rad/sec (4)

  • Replacing g, ω and r in (3):
  • \mu_{s} = \frac{g}{\omega^{2} r} = \frac{9.8m/s2}{(2.72rad/sec)^{2} *3.7 m} = 0.36 (5)

3 0
2 years ago
The mass of a string is 7.7 × 10-3 kg, and it is stretched so that the tension in it is 190 N. A transverse wave traveling on th
Scilla [17]

Length of the strings = 2.33 m

3 0
2 years ago
What mass of a material with density rho is required to make a hollow spherical shell having inner radius r1 and outer radius r2
Margarita [4]

Answer:

m=\rho\times \frac{4}{3} \times \pi \times(r_2^3-r_1^3  )

Explanation:

  • We have to make a hollow sphere of inner  radius r_1 and outer radius r_2.

Then the mass of the material required to make such a sphere would be calculated as:

Total volume of the spherical shell:

V_t=\frac{4}{3} \pi.r_2^3

And the volume of the hollow space in the sphere:

V_h=\frac{4}{3} \pi.r_1^3

Therefore the net volume of material required to make the sphere:

V=V_t-V_h

V=\frac{4}{3} \pi(r_2^3-r_1^3)

  • Now let the density of the of the material be \rho.

<u>Then the mass of the material used is:</u>

m=\rho.V

m=\rho\times \frac{4}{3} \times \pi \times(r_2^3-r_1^3  )

4 0
3 years ago
Other questions:
  • Assuming motion is on a straight path, what would result in two positive components of a vector?
    13·2 answers
  • If you drew magnetic field lines for this bar magnet, which statement would be true
    11·2 answers
  • Which best explains why a wood- burning fireplace represents an open system?
    14·2 answers
  • Our Sun emits most of its radiation at a wavelength of 550 nm. If a star were 3.50 times hotter than our Sun, it would emit most
    12·1 answer
  • What does this picture show?
    13·1 answer
  • A transformer connected to a 120-V (rms) ac line is to supply 13,000 V (rms) for a neon sign. To reduce shock hazard, a fuse is
    7·1 answer
  • g beats can be heard when Question 5 options: when sound waves interfere constructively when sound waves of same frequency inter
    9·1 answer
  • Doing work alawyas means blank energy​
    11·1 answer
  • An arrow is shot parallel to horizontal from a height of 1.4 meters. It has a velocity of 49 m/s.
    7·1 answer
  • How many atoms are present in 2 moles of chromium?
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!