Answer:
A). A few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.
Explanation:
Scientists decided to change the model of the atom when they discovered new evidence that showed 'few of the positive particles aimed at a gold foil seemed to bounce back off of the thin metallic foil.' On this ground, <u>Rutherford concluded that atom is mostly made up of empty space and thus, he proposed a nucleus model of atom in which the atom comprises of the tiny and positively charged nucleus is surrounded by electrons with a negative charge</u>. Thus, <u>option A</u> is the correct answer.
The question is incomplete, the options are;
RI^2
I^2/R
R/I^2
R/V^2
RV^2
V^2/R
VI
VIR
Select all that apply
Answer:
P=RI^2
P=V^2/R
P=VI
Explanation:
Power is the rate at which energy is changing in a circuit. It is shown by the formulas outlined above from the group of answer choices. Since the current (I), voltage (V), and resistance (R) were mentioned in the question, any of three three formulas could be used to obtain the power drawn by the conductor.
Because there is no oxygen in space and we need oxygen to function so we need the suit to incapsulate us in oxygen so we can respire and so can our skin
Answer:
B) No.
Explanation:
Okay,so,
this is equation is y=mx +b
mx represents the slope
and b represents the y-intercept
in order to figure this out you need to plot the y-intercept first
that makes its (0,-6) because the 6 is negative in the equation
4x is also equal to 4/1 since we dont know what x is
we have to do rise over run for this
you go up 4 spots on the y intercept from -6 because 4 is positive
then you go to the right 1 time because 1 is positive.
this leaves you at (1,-2)
so, (2,2) is NOT a solution
Answer:

Explanation:
According to Coulomb's law, the magnitude of the electric force between two point charges is directly proportional to the product of the magnitude of both charges and inversely proportional to the square of the distance that separates them:

Here k is the Coulomb constant. In this case, we have
,
and
. Replacing the values:

The negative sign indicates that it is an attractive force. So, the magnitude of the electric force is:
