The directions of the vectors for velocity and acceleration are in the opposite directions.
- The velocity vector is always in the direction of motion of the object. So, the direction of velocity is in the right from our point of view.
- When there is a positive acceleration in the object the acceleration vector is in the direction of motion of the object. When there is a negative acceleration in the object the acceleration vector is in the opposite direction of motion of the object. So, the direction of velocity is in the left from our point of view.
Velocity vector is the rate of change of position of an object. Acceleration vector is the rate of change of velocity of an object.
Therefore, the directions of the vectors for velocity and acceleration are in the opposite directions.
To know more about velocity and acceleration vectors
brainly.com/question/13492374
#SPJ4
Answer:
<em>The second option has a lower power output. P=30 W</em>
Explanation:
<u>Mechanical Power
</u>
It is a physical magnitude that measures the rate a work W is done over time t.

Since W=F.d

The first option means the worker will lift the box by a distance of 1.2 meters in 3 seconds by applying 250 N of force. That produces a power of

The second option requires the worker applies 75 N of force and travel a distance of 4 meters for 10 seconds, thus the power is

The second option has a lower power output
The FREQUENCY of light remains unchanged once it leaves the source.
The equation for force is F=ma. Because we have the value of mass (0.42 kg) and the acceleration (14.8 m/s^2), simply plug them into the equation for force to get

The answer is 6.22 N because newtons are the unit used to measure force.
Answer: Electrons are the smallest of the three particles that make up atoms. Electrons are found in shells or orbitals that surround the nucleus of an atom
Explanation: hope this helps