Answer:
Specific heat of alloy = 0.2 j/ g.°C
Explanation:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Given data:
Mass of bold = 25 g
Heat absorbed = 250 J
Initial Temperature = 25°C
Final temperature = 78°C
Specific heat of alloy = ?
Solution:
Change in temperature:
ΔT = 78°C - 25°C
ΔT = 53°C
Now we will put the values in formula.
Q = m.c. ΔT
250 j = 25 g × c ×53°C
250 j = 1325 g.°C × c
250 j / 1325 g.°C = c
c = 0.2 j/ g.°C
Forces are pushes and pulls that may change the motion of an object. Balanced forces result in an object remaining at rest or moving at a constant speed. Unbalanced forces result in the acceleration of an object. An object's motion depends on how it changes position.
Answer:
sodium bromide (NaBr) potassium hydroxide (KOH) magnesium chloride (MgCl2) silicon dioxide (SiO2) sodium oxide (Na2O)
Explanation:
Energy increases with increasing frequency.
Answer : The volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml
Solution : Given,
Molarity of aqueous
solution = 1.20 M = 1.20 mole/L
Volume of aqueous
solution = 50.0 ml = 0.05 L
(1 L = 1000 ml)
Molarity of
stock solution = 4.9 M = 4.9 mole/L
Formula used :

where,
= Molarity of aqueous
solution
= Molarity of
stock solution
= Volume of aqueous
solution
= Volume of
stock solution
Now put all the given values in this formula, we get the volume of
stock solution.

By rearranging the term, we get

Therefore, the volume of 4.9 M
stock solution used to prepare the solution is, 12.24 ml