The liquid to gas phase transition results in the largest increase in entropy.
<h3>
What is Entropy?</h3>
- Entropy is a measureable physical characteristic and a scientific notion that is frequently connected to a condition of disorder, unpredictability, or uncertainty.
- From classical thermodynamics, where it was originally recognized, through the microscopic description of nature in statistical physics, to the fundamentals of information theory, the phrase and concept are utilized in a variety of disciplines.
- It has numerous applications in physics and chemistry, biological systems and how they relate to life, cosmology, economics, sociology, weather science, and information systems, especially the exchange of information.
- Entropy has the effect of making some processes impossible or irreversible, in addition to the necessity that they not go against the first law of thermodynamics, which is the conservation of energy.
To learn more about entropy with the given link
brainly.com/question/13146879
#SPJ4
Explanation:
first of all open the menu
C, to make sure the design works as expected.
A prototype is first, typical model of the said product. Hope this helps!
In the reaction Sn(s) + 2H+(aq) → Sn2+ (aq) + H2(g)
from this reaction, we get that Sn loses from 0 to 2 electrons so it's oxidized So it is the reducing agent.
and H gains from 0 to 1 electrons so, it's reduced so ∴ it is the oxidizing agent
Answer:
869 g Cl₂O
Explanation:
To find the theoretical yield of Cl₂O, you need to (1) convert moles SO₂ to moles Cl₂O (via mole-to-mole ratio from reaction coefficients) and then (2) convert moles Cl₂O to grams Cl₂O (via molar mass). It is important to arrange the conversions/ratios in a way that allows for the cancellation of units (the desired unit should be in the numerator). The final answer should have 3 sig figs to reflect the sig figs of the given amount (10.0 moles).
1 SO₂ (g) + 2 Cl₂ (g) ----> 1 SOCl₂ (g) + 1 Cl₂O (g)
Molar Mass (Cl₂O): 2(35.453 g/mol) + 15.998 g/mol
Molar Mass (Cl₂O): 86.904 g/mol
10.0 moles SO₂ 1 mole Cl₂O 86.904 g
------------------------ x ---------------------- x ------------------ = 869 g Cl₂O
1 mole SO₂ 1 mole