Answer:
The equilibrium concentration of
.
The equilibrium concentration of
.
The equilibrium concentration of
.
Explanation:
Answer:
The equilibrium concentration of HCl is 0.01707 M.
Explanation:
Equilibrium constant of the reaction = 
Moles of 
Concentration of ![[PCl_3]=\frac{0.280 mol}{1.00 L}=0.280 M](https://tex.z-dn.net/?f=%5BPCl_3%5D%3D%5Cfrac%7B0.280%20mol%7D%7B1.00%20L%7D%3D0.280%20M)
Moles of 
Concentration of ![[Cl_2]=\frac{0.280 mol}{1.00 L}=0.280M](https://tex.z-dn.net/?f=%5BCl_2%5D%3D%5Cfrac%7B0.280%20mol%7D%7B1.00%20L%7D%3D0.280M)

Initial: 0.280 0.280 0
At eq'm: (0.280-x) (0.280-x) x
We are given:
![[PCl_3]_{eq}=(0.280-x)](https://tex.z-dn.net/?f=%5BPCl_3%5D_%7Beq%7D%3D%280.280-x%29)
![[Cl_2]_{eq}=(0.280-x)](https://tex.z-dn.net/?f=%5BCl_2%5D_%7Beq%7D%3D%280.280-x%29)
![[PCl_5]_{eq}=x](https://tex.z-dn.net/?f=%5BPCl_5%5D_%7Beq%7D%3Dx)
Calculating for 'x'. we get:
The expression of
for above reaction follows:
![K_c=\frac{[PCl_5]}{[PCl_3][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BPCl_5%5D%7D%7B%5BPCl_3%5D%5BCl_2%5D%7D)
Putting values in above equation, we get:

On solving this quadratic equation we get:
x = 0.228, 0.344
0.228 M < 0.280 M< 0.344 M
x = 0.228 M
The equilibrium concentration of
.
The equilibrium concentration of
.
The equilibrium concentration of
.
Answer:
Beta rays are electrons.
Explanation:
A neutron in the nucleus of a radioactive atom decays into a proton and an electron, which is emitted from the atom.