Answer:
CH2O is formaldehyde a covalent compound and its intermolecular forces are week
KCl is an ionic compound formed by electrostatic force of attraction between positive and negative charge. Ionic compounds also exists in three dimensional crystal lattic that is why intermolecular forces in KCl is stronger.
Moreover melting point of KCl is higher than CH2O
Explanation:
HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially.
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.
Br₂ (l) + 2 NaI (s) → 2 NaBr (s) + I₂ (s)
Explanation:
Reacting bromide (Br₂) with sodium iodine (NaI) will produce sodium bromide (NaBr) and iodine (I₂).
To balance the equation the number of atoms of each element entering the reaction have to be equal to the number of atoms of each element leaving the reaction, in order to conserve the mass.
Br₂ (l) + 2 NaI (s) → 2 NaBr (s) + I₂ (s)
where:
l - liquid
s - solid
This is a single replacement reaction because an element in a compound is replaced by another element. Generally a single replacement reaction is represented as: A + BC → AC + B
Learn more about:
types of chemical reactions
brainly.com/question/10105284
balancing chemical equations
brainly.com/question/13908054
#learnwithBrainly
Hydrogen is usually –1. This is INCORRECT. The oxidation number for H is +1.
Oxygen is usually –2. This is CORRECT.
A pure group 1 element is +1. This is INCORRECT. It does not follow. This will depend on the other elements and the overall charge.
A monatomic ion is 0. This is INCORRECT. Diatomic ion is 0.
It's a surface current because it's driven by the winds near the equator.
Explanation:
The Gulf stream<span> System is </span>one of<span> the world's most intensely studied current systems. The </span>Gulf stream<span> begins upstream of </span>the promontory<span>, </span>wherever<span> the </span>Sunshine State<span> Current ceases to follow the </span>seabed<span>. The position of the Stream </span>because it<span> leaves the coast changes throughout the year. </span>within the<span> fall, it shifts north, </span>whereas within the<span> winter and early spring it shifts south.</span>