The last electron on the outer most shell. or d oder of dere atomic no
Answer:
There is 2.52 kJ of energy released (option 4)
Explanation:
Step 1: Data given
The enthalpy of fusion of methanol (CH3OH) is 3.16 kJ/mol
Mass of methanol = 25.6 grams
Molar mass of methanol = 32.04 g/mol
Step 2: Calculate moles of methanol
Moles methanol = mass methanol / molar mass methanol
Moles methanol = 25.6 grams / 32.04 g/mol
Moles methanol = 0.799 moles
Step 3: Calculate energy transfer
Energy transfer = moles * enthalpy of fusion
Energy = 0.799 moles * 3.16 kJ/mol
Energy = 2.52 kJ released
There is 2.52 kJ of energy released
2Ca + O2 = 2CaO
First, determine which is the excess reactant
72.5 g Ca (1 mol) =1.8089725036
(40.078 g)
65 g O2 (1 mol) =2.0313769611
(15.999g × 2)
Since the ratio of to O2 is 2:1 in the balanced reaction, divide Ca's molar mass by 2 to get 0.9044862518. this isn't necessary because Ca is already obviously the limiting reactant. therefore, O2 is the excess reactant.
Now do the stoichiometry
72.5 g Ca (1 mol Ca) (1 mol O2)
(40.078 g Ca)(2 mol Ca)(31.998g O2)
=0.0282669621 g of O2 left over
Hmm... I'm unsure but its either B or D.
Answer:

Explanation:
Firstly, write the expression for the equilibrium constant of this reaction:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Secondly, we may relate the change in Gibbs free energy to the equilibrium constant using the equation below:

From here, rearrange the equation to solve for K:

Now we know from the initial equation that:
![K_{eq} = \frac{[ADP][Pi]}{ATP}](https://tex.z-dn.net/?f=K_%7Beq%7D%20%3D%20%5Cfrac%7B%5BADP%5D%5BPi%5D%7D%7BATP%7D)
Let's express the ratio of ADP to ATP:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D)
Substitute the expression for K:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D)
Now we may use the values given to solve:
![\frac{[ADP]}{[ATP]} = \frac{[Pi]}{K_{eq}} = \frac{[Pi]}{e^{-\frac{\Delta G^o}{RT}}} = [Pi]e^{\frac{\Delta G^o}{RT}} = 1.0 M\cdot e^{\frac{-30 kJ/mol}{2.5 kJ/mol}} = 6.14\cdot 10^{-6}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BADP%5D%7D%7B%5BATP%5D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7BK_%7Beq%7D%7D%20%3D%20%5Cfrac%7B%5BPi%5D%7D%7Be%5E%7B-%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%7D%20%3D%20%5BPi%5De%5E%7B%5Cfrac%7B%5CDelta%20G%5Eo%7D%7BRT%7D%7D%20%3D%201.0%20M%5Ccdot%20e%5E%7B%5Cfrac%7B-30%20kJ%2Fmol%7D%7B2.5%20kJ%2Fmol%7D%7D%20%3D%206.14%5Ccdot%2010%5E%7B-6%7D)