464 g radioisotope was present when the sample was put in storage
<h3>Further explanation</h3>
Given
Sample waste of Co-60 = 14.5 g
26.5 years in storage
Required
Initial sample
Solution
General formulas used in decay:

t = duration of decay
t 1/2 = half-life
N₀ = the number of initial radioactive atoms
Nt = the number of radioactive atoms left after decaying during T time
Half-life of Co-60 = 5.3 years
Input the value :

Answer:
may be...... false not sure
Explanation:
Answer:
I would go with the first option. It shows how people having been releasing more and more carbon dioxide into the atmosphere.
Explanation:
The quantity of substance remains after 850 years is 8.98g if the half life of radioactive radium is 1,599 years.
<h3>What is half life period? </h3>
The time taken by substance to reduce to its half of its initial concentration is called half life period.
We will use the half- life equation N(t)
N e^{(-0.693t) /t½}
Where,
N is the initial sample
t½ is the half life time period of the substance
t2 is the time in years.
N(t) is the reminder quantity after t years .
Given
N = 13g
t = 350 years
t½ = 1599 years
By substituting all the value, we get
N(t) = 13e^(0.693 × 50) / (1599)
= 13e^(- 0.368386)
= 13 × 0.691
= 8.98
Thus, we calculated that the quantity of substance remains after 850 years is 8.98g if the half life of radioactive radium is 1,599 years.
learn more about half life period:
brainly.com/question/20309144
#SPJ4
Answer:
A compound is just pure that is composed of elements that are chemically bonded in definite proportions
andd solution is umm well its a homogenous so basically saying
that it all just stays the same all the way through
Explanation:
im not sure how else to explain it haah hope this helped :P