6z - 12 + 4 = 10
6z -8 = 10
6z = 18
z = 3
Answer:
![\Sigma_{k=1}^{n}[3(\frac{10}{9} )^{k-1}]](https://tex.z-dn.net/?f=%5CSigma_%7Bk%3D1%7D%5E%7Bn%7D%5B3%28%5Cfrac%7B10%7D%7B9%7D%20%29%5E%7Bk-1%7D%5D)
Step-by-step explanation:
A geometric sequence is a list of numbers having a common ratio. Each term after the first is gotten by multiplying the previous one by the common ratio.
The first term is denoted by a and the common ratio is denoted by r.
A geometric sequence has the form:
a, ar, ar², ar³, . . .
The nth term of a geometric sequence is 
Therefore the sum of the first n terms is:

Given a geometric series with a first term of 3 and a common ratio of 10/9, the sum of the first n terms is:
3x+7-5x=8
-2x+7=8
-2x=1
X=-1/2
y=3(-1/2)+7
y=-1.5+7
y=5.5
55° is equal to 0.9599 radians.
Step-by-step explanation:
Step 1:
If an angle is represented in degrees, it will be of the form x°.
If an angle is represented in radians, it will be of the form
radians.
To convert degrees to radians, we multiply the degree measure by
.
For the conversion of degrees to radians,
the degrees in radians = (given value in degrees)(
).
Step 2:
To convert 50°,

radians.
So 55° is equal to 0.9599 radians.
The answer to your question is 8.6