<u>Explanation:</u>
Molecular formula is the chemical formula which depicts the actual number of atoms of each element present in the compound.
Empirical formula is the simplest chemical formula which depicts the whole number of atoms of each element present in the compound.
In both the formulas, the nature of atoms remains the same but the number differs.
For Example: The molecular formula of oxalic acid is
but the empirical formula of oxalic acid is 
To calculate the molecular formula, we need to find the valency which is multiplied by each element to get the molecular formula.
The equation used to calculate the valency is:

The empirical mass can be calculated from empirical formula and molar mass must be known.
the nucleus of an atom is held together by the strong force, while the electrons are held in the atom by the electric force.
Answer:

Explanation:
1. Solubility of CaF_2
(a) Molar solubility
CaF₂ ⇌ Ca²⁺ + 2F⁻
![K_{\text{sp }} = \text{[Ca$^{2+}$]}\text{[F$^{-}$]}^{2}= 4.0 \times 10^{-8}\\s(2s)^{2}=4.0 \times 10^{-8}\\4s^{3} = 4.0 \times 10^{-8}\\s^{3} = 1.0 \times 10^{-8}\\s =2.2 \times 10^{-3}\text{ mol/L}](https://tex.z-dn.net/?f=K_%7B%5Ctext%7Bsp%20%7D%7D%20%3D%20%5Ctext%7B%5BCa%24%5E%7B2%2B%7D%24%5D%7D%5Ctext%7B%5BF%24%5E%7B-%7D%24%5D%7D%5E%7B2%7D%3D%204.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%282s%29%5E%7B2%7D%3D4.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5C4s%5E%7B3%7D%20%3D%204.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%5E%7B3%7D%20%3D%201.0%20%5Ctimes%2010%5E%7B-8%7D%5C%5Cs%20%3D2.2%20%5Ctimes%2010%5E%7B-3%7D%5Ctext%7B%20mol%2FL%7D)
(b) Mass solubility

2. pH
pH = -log [H⁺] = -log(3.0 × 10⁻⁴) = 3.52
3. Oxidizing and reducing agents
Zn + Cl₂ ⟶ ZnCl₂

The oxidation number of Cl has decreased from 0 to -1.
Cl has been reduced, so Cl is the oxidizing agent.
4. Oxidation numbers
(a) Al₂O₃

1O = -2; 3O = -6; 2Al = +6; 1Al = +3
(b) XeF₄

1F = -1; 4F = -4; 1 Xe = +4
(c) K₂Cr₂O₇

1K = +1; 2K = +2; 1O = -2; 7O = -14
+2 - 14 = -12
2Cr = + 12; 1 Cr = +6
Given the data from the question, the mass of arsenic that contains 1.23×10²⁰ atoms is 0.0153 g
<h3>Avogadro's hypothesis </h3>
6.02×10²³ atoms = 1 mole of arsenic
But
1 mole of arsenic = 75 g
Thus, we can say that:
6.02×10²³ atoms = 75 g of arsenic
<h3>How to determine the mass that contains 1.23×10²⁰ atoms</h3>
6.02×10²³ atoms = 75 g of arsenic
Therefore,
1.23×10²⁰ atoms = (1.23×10²⁰ × 75) / 6.02×10²³ atoms)
1.23×10²⁰ atoms = 0.0153 g of arsenic
Thus, 1.23×10²⁰ atoms is present in 0.0153 g of arsenic
Learn more about Avogadro's number:
brainly.com/question/26141731