STP is the abbreviation of standard condition for temperature and pressure which is 273.15K temperature and 1.013× 10^5 Pa pressure. Since the pressure and temperature changes, I assume the question would ask about the result of the volume. The temperature used in ideal gas should be Kelvin, so 27 Celcius would be 300.15K.
The calculation would be
PV=T
V=T/P
V2/V1= T2*P1/T1*P2
V2/V1=273.15K* 90^10^3Pa/ 300.15K * 1.013× 10^5 Pa
V2= 0.81904 * 51.7ml
V2= 42.34ml
Answer:
The answer is 0.844/10 minutes
Explanation:
You have an enzyme that catalizes a reaction which gives a product that can be quantified by an absorbance measurement. The more reaction time, the more product quantity and higher absorbance.
The rate of the reaction is the change in products quantity per time unit. As you are using the absorbance as a measure of the product quantity, you can calculate the rate as the change in absorbance (ΔA) per time (in minutes) as follows:
rate= ΔA/time
rate= (final absorbance - initial absorbance) /minutes
rate= (0.444-0.022)/5 min
rate= 0.422/5 min
In 10 minutes will be :
rate= 0.844/10 min
Commonly, a rate is the relation between two quantities measured in different units. For example, the speed of a car is the change in meters (traveled distance) per time (m/s or km/h). For an enzyme, is the same (quantity of product/time).
Answer:
Heating of the liquid water in a microwave.
Explanation:
Radiation is a form of heat transfer process that does not require a material medium rather it travels through space or vacuum in the form of electromagnetic waves or radiation. Heat transfer by radiation occurs in the form of microwaves, infrared radiation, visible light, or another form of electromagnetic radiation is emitted or absorbed. Some common examples of heat transfer by radiation is the warming of the Earth by the Sun, the warmth one experiences while sitting by the campfire, or the heating up of foods in a microwave.
Black bodies or surfaces are good absorbers as well as emitters of radiation. On the other shiny or white surfaces are poor radiators of heat.
From the above discussion on radiation, it can be seen that when the chemist takes the liquid and heats it in a microwave, the heat absorbed by the liquid to change to gaseous state is transferred through radiation.
The properties of the electrons of an atom are determined in large part by the number of protons presented in the nucleus of the atom