Delta enthalpy = 2x386-3x1x432-3x942=-3350kJ/mol
To solve this questions you first need to find the number of moles of barium phosphate you have. The molar mass of barium phosphate is 601.93g/mol.
24.4/601.83 = 0.0402 moles barium phosphate
Then you need to use avagadro’s number, 6.022 x 10^23, which is the number of molecules or formula units in a mole.
6.022 x 10^23 * 0.0402 = 2.42 x 10^22 formula units
When `CO_(2)` is bubbled through a cold pasty solution of barium peroxide in water, `H_(2)O_(2)` is obtained. <br> `BaO+CO_(2)+H_(2)OtoBaCO_(3)+H_(2)O_(2)` Barium carbonate being insoluble is filtered off. This is known as Merck's process.
<h3>What is meant by Perhydrol?</h3>
perhydrol (countable and uncountable, plural perhydrols) A stabilised solution of hydrogen peroxide.
<h3>What is Merck's Perhydrol?</h3>
Uses: Perhydrol is used as an antiseptic for wounds, and also acts as a germicide to kill bacteria and germs.
Being a strong oxidizing agent it has bleaching properties and acts as a ripening agent.
Learn more about merck's process here:
<h3>
brainly.com/question/16856280</h3><h3 /><h3>#SPJ4</h3>
Answer:
32.7 g of Zn
Explanation:
We'll begin by writing the balanced equation for the reaction. This is illustrated below:
Zn + 2HCl —> ZnCl₂ + H₂
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂
Next, we shall determine the number of mole of Zn required to produce 0.5 mole of H₂. This can be obtained as follow:
From the balanced equation above,
1 mole of Zn reacted to produce 1 mole of H₂.
Therefore, 0.5 mole of Zn will also react to produce to 0.5 mole of H₂.
Thus, 0.5 mole of Zn is required.
Finally, we shall determine the mass of 0.5 mole of Zn. This can be obtained as follow:
Mole of Zn = 0.5 mole
Molar mass of Zn = 65.4 g/mol
Mass of Zn =?
Mass = mole × molar mass
Mass of Zn = 0.5 × 65.4
Mass of Zn = 32.7 g
Thus, 32.7 g of Zn is required to produce 0.5 mole of H₂.