The mass of NaCl needed for the reaction is 91.61 g
We'll begin by calculating the number of mole of F₂ that reacted.
- Gas constant (R) = 0.0821 atm.L/Kmol
PV = nRT
1.5 × 12 = n × 0.0821 × 280
18 = n × 22.988
Divide both side by 22.988
n = 18 / 22.988
n = 0.783 mole
Next, we shall determine the mole of NaCl needed for the reaction.
F₂ + 2NaCl —> Cl₂ + 2NaF
From the balanced equation above,
1 mole of F₂ reacted with 2 moles of NaCl.
Therefore,
0.783 mole F₂ will react with = 0.783 × 2 = 1.566 moles of NaCl.
Finally, we shall determine the mass of 1.566 moles of NaCl.
- Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass = mole × molar mass
Mass of NaCl = 1.566 × 58.5
Mass of NaCl = 91.61 g
Therefore, the mass of NaCl needed for the reaction is 91.61 g
Learn more about stiochoimetry: brainly.com/question/25830314
<span>The type of bond that a
Phosphorous pentachloride have is an Ionic Bonding. It is a form of chemical
bond that encompasses the electrostatic attraction between oppositely charged
ions which serves as the primary interaction happening in ionic compound. Phosphorus
has 5 valence electrons and Chlorine has 7 valence electrons. Phosphorus contributes
1 electron to each chlorine and all the 6 achieve 8 electrons in the outer
shell thus creating an ionic bond.</span>
In the given above, we have two densities which are 0.89 g/mL and 0.72 g/mL. We are also given that the liquids are immiscible. After the settlement of the liquids, they will form two layers.
The heavier substance, the one which has a higher density will be at the bottom and the lighter substance, the one which has a lower density will be at the top layer.
Answer:
A hydrocarbon containing a carbon - carbon double bond.
Explanation:
Alkene is hydrocarbon containing a
carbon - carbon double bond.
( Refer the attachment to understand more clearly )