Answer:
C.) HOCl Ka=3.5x10^-8
Explanation:
In order to a construct a buffer of pH= 7.0 we need to find the pKa values of all the acids given below
we Know that
pKa= -log(Ka)
therefore
A) pKa of HClO2 = -log(1.2 x 10^-2)
=1.9208
B) similarly PKa of HF= -log(7.2 x 1 0^-4)= 2.7644
C) pKa of HOCl= -log(3.5 x 1 0^-8)= 7.45
D) pKa of HCN = -log(4 x 1 0^-10)= 9.3979
If we consider the Henderson- Hasselbalch equation for the calculation of the pH of the buffer solution
The weak acid for making the buffer must have a pKa value near to the desired pH of the weak acid.
So, near to value, pH=7.0. , the only option is HOCl whose pKa value is 7.45.
Hence, HOCl will be chosen for buffer construction.
One possible answer could be that a chemical reaction has occurred.
Answer:
we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
Explanation:
when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate we will except an increase in the polarity of the system and this will cause the Non-polar spot to be near the solvent front, while the polar spot will run at an approximate speed of 0.5 Rf
The speed of the polar spot depends largely on the level of polarity, an increase in the polarity will see both spots of Neat hexane run when we run a TLC plate in a 50/50 mixture of hexanes and ethyl acetate
Answer:
Many emerging diseases arise when infectious agents in animals are passed to humans (referred to as zoonoses). As the human population expands in number and into new geographical regions, the possibility that humans will come into close contact with animal species that are potential hosts of an infectious agent increases.
Explanation: