1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Leokris [45]
2 years ago
15

How many moles of nh3 can be produced from 15.0 mol of h2 and excess n2?

Chemistry
1 answer:
PSYCHO15rus [73]2 years ago
5 0
First, we have to write a balanced equation for the production of ammonia (NH₃) from hydrogen gas (H₂) and nitrogen gas (N₂):
                    N₂   +   3H₂   →   2NH₃

Now, the mole ratio of H₂ : NH₃ is 3 : 2 based on the coefficients of the balanced equation.

If the moles of H₂ = 15 moles

   then the moles of NH₃ produced = (15 mol ÷ 3) × 2 
                                                          =  10 mol

Thus, the number of moles of NH₃ produced when 15 mol of hydrogen gas is combined with excess nitrogen gas is 10 mol.
You might be interested in
3. What is the primary consumer in the following food chain, sun - tomato plant - tomato worm - wasp?
Julli [10]

Answer:

Tomato worm  

Explanatio

v

vv

5 0
2 years ago
Read 2 more answers
An air sample consists of oxygen and nitrogen gas as major components. It also contains carbon dioxide and traces of some rare g
jekas [21]

Explanation:

A mixture is defined as the substance that contains two or more different number of substances that are physically mixed together.

For example, a mixture of air which contains oxygen, nitrogen and other gases.

A mixture in which solute particles are unevenly distributed into the solvent then it is known as a heterogeneous mixture.

For example, sand in water is a heterogeneous mixture.

A homogeneous mixture is defined as the mixture in which solute particles are evenly distributed in a solvent.

A homogeneous mixture is a clear solution.

For example, salt dissolved in water is a homogeneous mixture.

A solution is defined as the substance in which two or more substances are mixed together.

A compound is defined as the substance that contains two or more different elements that chemically combined together in a fixed ratio by mass.

A element is defined as the substance that contains only one type of atoms.

For example, a piece of sodium element will contain only atoms of sodium.

Whereas a pure substance is defined as the substance which contains only one type of molecule or one type of atom.

For example, O_{2}, N_{2} etc are pure substances.

Thus, we can conclude that the terms which could be used to describe the given sample of air is as follows.

  • pure chemical substance.
  • heterogenous mixture.
  • mixture.
4 0
3 years ago
Which statement describes the charge of an
qwelly [4]
I think that you didn't copy the answers correctly, because 1 and 2 are the same, and 3 and 4 are also the same here.
Anyways, the answer which is correct is that an electron has a charge of -1, and a proton has a charge of +1.
Electrons are negatively charged, whereas protons are positively charged. Neutrons are neutral. 
6 0
2 years ago
Calculate the number of moles and the mass of the solute in each of the following solutions:
frosja888 [35]

<u>Answer:</u>

<u>For a:</u> The number of moles of KI are 2.7\times 10^{-5} and mass is 4.482\times 10^{-3}g

<u>For b:</u> The number of moles of sulfuric acid are 1.65\times 10^{-5} and mass is 1.617\times 10^{-3}g

<u>For c:</u> The number of moles of potassium chromate are 2.84\times 10^{-2} and mass is 5.51 g.

<u>For d:</u> The number of moles of ammonium sulfate are 39.018 moles and mass is 5155.84 grams.

<u>Explanation:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}    .....(1)

To calculate the number of moles of a substance, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}     .....(2)

  • <u>For a:</u>

Molarity of KI = 8.23\times 10^{-5}M

Volume of solution = 325 mL = 0.325 L     (Conversion factor: 1 L = 1000 mL)

Putting values in equation 1, we get:

8.25\times 10^{-5}mol/L=\frac{\text{Moles of KI}}{0.325L}\\\\\text{Moles of KI}=2.7\times 10^{-5}mol

Now, using equation 2, we get:

Moles of KI = 2.7\times 10^{-5}mol

Molar mass of KI = 166 g/mol

Putting values in equation 2, we get:

2.7\times 10^{-5}mol=\frac{\text{Mass of KI}}{166g/mol}\\\\\text{Mass of KI}=4.482\times 10^{-3}g

Hence, the number of moles of KI are 2.7\times 10^{-5} and mass is 4.482\times 10^{-3}g

  • <u>For b:</u>

Molarity of sulfuric acid = 22\times 10^{-5}M

Volume of solution = 75 mL = 0.075 L

Putting values in equation 1, we get:

22\times 10^{-5}mol/L=\frac{\text{Moles of sulfuric acid}}{0.075L}\\\\\text{Moles of }H_2SO_4=1.65\times 10^{-5}mol

Now, using equation 2, we get:

Moles of sulfuric acid = 1.65\times 10^{-5}mol

Molar mass of sulfuric acid = 98 g/mol

Putting values in equation 2, we get:

1.65\times 10^{-5}mol=\frac{\text{Mass of }H_2SO_4}{98g/mol}\\\\\text{Mass of }H_2SO_4=1.617\times 10^{-3}g

Hence, the number of moles of sulfuric acid are 1.65\times 10^{-5} and mass is 1.617\times 10^{-3}g

  • <u>For c:</u>

Molarity of potassium chromate = 0.1135M

Volume of solution = 0.250 L

Putting values in equation 1, we get:

0.1135mol/L=\frac{\text{Moles of }K_2CrO_4}{0.250L}\\\\\text{Moles of }K_2CrO_4=2.84\times 10^{-2}mol

Now, using equation 2, we get:

Moles of potassium chromate = 2.84\times 10^{-2}mol

Molar mass of potassium chromate = 194.2 g/mol

Putting values in equation 2, we get:

2.84\times 10^{-2}mol=\frac{\text{Mass of }K_2CrO_4}{194.2g/mol}\\\\\text{Mass of }K_2CrO_4=5.51g

Hence, the number of moles of potassium chromate are 2.84\times 10^{-2} and mass is 5.51 g.

  • <u>For d:</u>

Molarity of ammonium sulfate = 3.716 M

Volume of solution = 10.5 L

Putting values in equation 1, we get:

3.716mol/L=\frac{\text{Moles of }(NH_4)_2SO_4}{10.5L}\\\\\text{Moles of }(NH_4)_2SO_4=39.018mol

Now, using equation 2, we get:

Moles of ammonium sulfate = 39.018 mol

Molar mass of ammonium sulfate = 132.14 g/mol

Putting values in equation 2, we get:

39.018mol=\frac{\text{Mass of }(NH_4)_2SO_4}{132.14g/mol}\\\\\text{Mass of }(NH_4)_2SO_4=5155.84g

Hence, the number of moles of ammonium sulfate are 39.018 moles and mass is 5155.84 grams.

3 0
3 years ago
How many grams of NaCl are needed to prepare 50.0 grams of a 35.0% salt solution?​
DiKsa [7]

Answer:  5.844 grams of NaCl needed to make solution.

Explanation:

3 0
3 years ago
Other questions:
  • On the Earth's surface, transporting materials are more common than residual materials. This condition is mainly the result of
    9·1 answer
  • How does the temperature of water affect the way water moves
    6·1 answer
  • You record a %T of 85 from a Spec 20.<br><br> This is equivalent to what absorbable level?
    15·1 answer
  • Which of the following rights is granted by the Fifth Amendment?
    9·1 answer
  • Why do we see different phases of the lunar cycle?
    5·1 answer
  • What is the difference between base alkali and acid in chemistry?
    15·2 answers
  • 2. (05.02 MC)
    12·1 answer
  • Edpuzzle
    11·1 answer
  • 1. Which is not a characteristic of asexual reproduction?
    5·1 answer
  • Three difference between radicle and plumule​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!