Answer:
Explanation:
The graph shows the phase diagram of water . From it , it is clear that at 100°C water remains in equilibrium with water vapour and at this temperature , the vapour pressure is equal to one atm . So this must be boiling point of water.
At 0.7 atm pressure , boiling point must have been reduced . So when water is at 100°C , it must have been completely in vapour phase .
Now the pressure is increased to 1.4 atm . In this process of increase of pressure , the water in vapour state must have turned into liquid state as soon as the pressure increases beyond 1 atm . Beyond it its boiling point would have increased above 100°C so it can not remain in gaseous phase . At 1.4 atm , its boiling point would have increased to 110°C or so . Hence it must be in liquid phase because its temperature is below its boiling point at that pressure .
Hence water changes from gaseous phase to liquid phase when pressure changes from 0.7atm to 1.4 atm .
Explanation:
oxygen and are negatively charged anions because the oxygen atoms attract electrons. Ammonium is one of the few positively charged polyatomic ions or cations and doesn't contain oxygen.
Typically the warm front is pushed upward and the cold pushed downward.
Answer:
a

b

Explanation:
From the question we are told that
The pressure of compressed gas is 
The temperature is 
Generally the perfect gas equation is mathematically represented as

substituting 0.08206 L-atm/mol-K for R and 1 mole for n
We have that


Generally the van der Waals equation is mathematically represented as
![nRT = [P + \frac{n^2 * a }{V^2 } ][V - nb]](https://tex.z-dn.net/?f=nRT%20%20%3D%20%20%5BP%20%2B%20%5Cfrac%7Bn%5E2%20%2A%20a%20%7D%7BV%5E2%20%7D%20%5D%5BV%20-%20nb%5D)
=>![1 * 0.08206 *298 = [197.4 + \frac{1^2 * 1.364}{V^2 } ][V - 1 * 3.19 * 10^{-2}]](https://tex.z-dn.net/?f=1%20%2A%20%200.08206%20%2A298%20%20%3D%20%20%5B197.4%20%2B%20%5Cfrac%7B1%5E2%20%2A%20%201.364%7D%7BV%5E2%20%7D%20%5D%5BV%20-%201%20%2A%203.19%20%2A%2010%5E%7B-2%7D%5D)
=> 