The velocity (V) of a wave is the frequency (F) times the wave length (lambda):
V = F * lamda
lambda is the distance from crest to crest which is twice the distance from crest to trough.
=> lamba = 2 * 3.00 m = 6.00 m
F = number of waves / time = 13.0 waves / 20.2 s
Now you can plug in the values in the formula of V:
V = 6.00 m/wave* 13.0 waves / 20.2 s = 3.86 m/s
Answer: 3.86 m/s
Answer:
A procedure according to the norms.
Explanation:
If possible, proceed to fix the leak in no more than 30 days from the moment it was discovered.
Otherwise, during the first 30 days develop a planification to backfit the leak or, if needed, retire the appliance. This should be executed within one year.
Answer:
Minimum diameter of the camera lens is 22.4 cm
The focal length of the camera's lens is 300cm
Explanation:
y = Resolve distance = 0.3 m
h = Height of satellite = 100 km
λ = Wavelength = 550 nm
Angular resolution

From Rayleigh criteria

Minimum diameter of the camera lens is 22.4 cm
Relation between resolvable feature, focal length and angular resolution

The focal length of the camera's lens is 300cm
Answer:
a) their amplitudes are the same their phase difference is constant their frequencies are the same
Explanation:
Coherent waves are the waves that have constant phase difference, equal frequency, amplitude and waveform.
Frequency denotes the number of cycles a wave completes in one second.
Amplitude is the maximum height that the wave reaches.
Waveform is the two dimensional representation of a wave in graphical form.
Answer:
Force exerted by the lighter block on the heavier block is 6.63 N
Explanation:
Given Data
F = 80N
m = 1kg
M = 11kg
Solution:
*We assume that there is no friction
Calculating the acceleration of the system
a = 
a = 
a = 
a = 6.67m
Let's write the Equation of Motion of the heavier block
= F - 
Ma = F - 
force exerted by the lighter block on the heavier block is calculated as
= F - Ma
= 80 - (11 x 6.67)
= 6.63 N