Answer:

Explanation:
For light passing through a single slit, the position of the nth-minimum from the central bright fringe in the diffraction pattern is given by

where
is the wavelength
D is the distance of the screen from the slit
d is the width of the slit
In this problem, we have
is the wavelength of the red light
D = 14 m is the distance of the screen from the doorway
d = 1.0 m is the width of the doorway
Substituting n=1 into the equation, we find the distance between the central bright fringe and the first-order dark fringe (the first minimum):

When looking at this question, we can easily start by eliminating certain answers. In the selections you've provided, you've shown atmosphere. We can easily eliminate letter A, as that makes absolutely no sense. Moving on, you also eliminate letter B, as that deals with ecosystems and whatnot. And finally, you can eliminate hydrosphere, letter C - as that's not the same. That deals with water, like oceans or rivers.
That leaves you with D) Lithosphere for your answer. The Lithosphere is the rigid part of the earth, the outermost layer, I would say. The crust / mantle. That's why it would be letter D - plate tectonics seem to have relations with the Lithosphere. The lithosphere is affected.
Answer:
0.20kg-m^2
Explanation:
Let the linear velocity of the rope(=of pulley) is v m/s
Using kinematic equation
=> v = u + at
=>v = 0 + 4.9a
=>v = 4.9a ------------ eq1
By v^2 = u^2 + 2as
=>v^2 = 0 + 2 x v/4.9 x 1.2
=>4.9v^2 - 2.4v = 0
=>v(4.9v - 2.4) = 0
=>v = 2.4/4.9 = 0.49 m/s
Thus by v = r x omega
=>omega = v/r = 0.49/0.02 = 24.49 rad/sec
BY W = F x s = 50 x 1.2 = 60 J
=>KE(rotational) = W = 1/2 x I x omega^2
=>60 = 1/2 x I x (24.49)^2
=>I = 0.20 kg-m^2
The lungs hold air that is taken in. Oxygen gas noticeable all around moves into the blood. The heart pumps to transports this oxygenated blood to cells in the body that need it to deliver vitality.