The starting point for measuring motion is called : The Reference Point.
To solve this problem we will apply the concepts of linear mass density, and the expression of the wavelength with which we can find the frequency of the string. With these values it will be possible to find the voltage value. Later we will apply concepts related to harmonic waves in order to find the fundamental frequency.
The linear mass density is given as,



The expression for the wavelength of the standing wave for the second overtone is

Replacing we have


The frequency of the sound wave is



Now the velocity of the wave would be



The expression that relates the velocity of the wave, tension on the string and linear mass density is





The tension in the string is 547N
PART B) The relation between the fundamental frequency and the
harmonic frequency is

Overtone is the resonant frequency above the fundamental frequency. The second overtone is the second resonant frequency after the fundamental frequency. Therefore

Then,

Rearranging to find the fundamental frequency



Increasing the tension of a spring affects a wave on the spring because it increases the frequency. When the tension rises, so does the frequency.
Answer:
Electric current in amperes = 1.1808 A
Explanation:
Given:
Intercept protons rate = 1800 protons per second
Area = 41 × 10⁷ km²
Find:
Electric current in amperes
Computation:
Current density = Intercept protons rate × 1.6 × 10⁻¹⁹
Current density = 1800 × 1.6 × 10⁻¹⁹
Current density = 2.88 × 10⁻¹⁶
1 km² = 10⁶m²
So,
Electric current in amperes = 2.88 × 10⁻¹⁶ × 41 × 10⁷ × 10⁶
Electric current in amperes = 1.1808 A