Answer:
It would change the charge of the atom.
Explanation:
Added electrons cause atoms to be negatively charged, lost electrons cause atoms to be positively charged.
<u>Answer:</u> The concentration of hydrogen gas at equilibrium is 0.0275 M
<u>Explanation:</u>
Molarity is calculated by using the equation:

Moles of HI = 0.550 moles
Volume of container = 2.00 L

For the given chemical equation:

<u>Initial:</u> 0.275
<u>At eqllm:</u> 0.275-2x x x
The expression of
for above equation follows:
![K_c=\frac{[H_2][I_2]}{[HI]^2}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BH_2%5D%5BI_2%5D%7D%7B%5BHI%5D%5E2%7D)
We are given:

Putting values in above expression, we get:

Neglecting the negative value of 'x' because concentration cannot be negative
So, equilibrium concentration of hydrogen gas = x = 0.0275 M
Hence, the concentration of hydrogen gas at equilibrium is 0.0275 M
Beryllium has two inner shell electrons
When sodium carbonate is dissolved in water, the equation is
.
When carbon dioxide is placed in water, aqueous carbon dioxide is formed: 
<h3>Dissolution of compounds in water</h3>
Some compounds are water-soluble, some are just partially soluble, while others are insoluble in water. Some soluble or partially soluble substances dissociate in water into their component ions. These substances are said to be ionic.
Sodium carbonate, like every other sodium salt, is soluble in water. It dissolves in water to form an aqueous solution of sodium carbonate.
While in solution, sodium carbonate dissociates into its component ions according to the following equation:

Carbon dioxide, on the other hand, does not dissociate in water. Instead, it dissolves in water where most of it remains as aqueous carbon dioxide in equilibrium with a small amount of hydronium ion and hydrogen carbonate ion.
Since the hydronium and hydrogen carbonate ions formed are so minute, the equation of the reaction can be written as: 
More on the dissolution of substances can be found here: brainly.com/question/28580758
#SPJ1
The person above me is correct I took a test on this so it’s the right answer