Answer:
σ = 4.998 E-4 C/m²
Explanation:
- 1 Coulomb (C) ≡ 6.241509 E18 electrons (e)
∴ # elect = 6.24 E14 elect
charge (Q):
⇒ Q = (6.24 E14 elect)/( 1 C /6.241509 E18 elect) = 9.998 E-5 C
charge density (σ):
∴ surface area (S) = 0.2 m²
⇒ σ = ( 9.998 E-5 C ) / ( 0.2 m²)
⇒ σ = 4.998 E-4 C/m²
The decomposition time : 7.69 min ≈ 7.7 min
<h3>Further explanation</h3>
Given
rate constant : 0.029/min
a concentration of 0.050 mol L to a concentration of 0.040 mol L
Required
the decomposition time
Solution
The reaction rate (v) shows the change in the concentration of the substance (changes in addition to concentrations for reaction products or changes in concentration reduction for reactants) per unit time
For first-order reaction :
[A]=[Ao]e^(-kt)
or
ln[A]=-kt+ln(A0)
Input the value :
ln(0.040)=-(0.029)t+ln(0.050)
-3.219 = -0.029t -2.996
-0.223 =-0.029t
t=7.69 minutes
Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.
Answer:
The empirical formula is the simplest ratio of atoms while molecular is the actual formula.
Explanation:
Empirical Formula is the simplest ratio of atoms present in the compound.
The molecular formula shows the actual number of atoms present in the compound.
For example, CH is the empirical formula and C6H6 is the molecular formula of benzene.
<u>Answer:</u> The reaction proceeds in the forward direction
<u>Explanation:</u>
For the given chemical equation:

Relation of
is given by the formula:

where,
= equilibrium constant in terms of partial pressure = ?
= equilibrium constant in terms of concentration = 
R = Gas constant = 
T = temperature = ![35^oC=[35+273]K=308K](https://tex.z-dn.net/?f=35%5EoC%3D%5B35%2B273%5DK%3D308K)
= change in number of moles of gas particles = 
Putting values in above equation, we get:

is the constant of a certain reaction at equilibrium while
is the quotient of activities of products and reactants at any stage other than equilibrium of a reaction.
The expression of
for above equation follows:

We are given:



Putting values in above equation, we get:

We are given:

There are 3 conditions:
- When
; the reaction is product favored. - When
; the reaction is reactant favored. - When
; the reaction is in equilibrium
As,
, the reaction will be favoring product side.
Hence, the reaction proceeds in the forward direction