Nuclear power generates large amounts of power with limited production of greenhouse gases.
is the answer
The tension in the rope B is determined as 10.9 N.
<h3>
Vertical angle of cable B</h3>
tanθ = (6 - 4)/(5 - 0)
tan θ = (2)/(5)
tan θ = 0.4
θ = arc tan(0.4) = 21.8 ⁰
<h3>Angle between B and C</h3>
θ = 21.8 ⁰ + 21.8 ⁰ = 43.6⁰
Apply cosine rule to determine the tension in rope B;
A² = B² + C² - 2BC(cos A)
B = C
A² = B² + B² - (2B²)(cos A)
A² = 2B² - 2B²(cos 43.6)
A² = 0.55B²
B² = A²/0.55
B² = 65.3/0.55
B² = 118.73
B = √(118.73)
B = 10.9 N
Thus, the tension in the rope B is determined as 10.9 N.
Learn more about tension here: brainly.com/question/24994188
#SPJ1
Answer:
Option B (remain vertically under the plane) is the correct option.
Explanation:
- A flare would follow a particle trajectory with horizontal direction somewhat like airplane velocity as well as initial maximum motion as null but instead, gravity will induce acceleration. It would be lowered vertically underneath the plane before flare had already sunk to something like the surface.
- There is no different movement in the airplane nor even the flash. And none of them can change its horizontal level.
Some other alternatives are given really aren't linked to the specified scenario. So choice B is the perfect solution to that.
you could make a self propelled car all you need is cardboard, wheels, and a balloons or rubber bands