Answer:
130.5g
Explanation:
At the of the reaction, the combined mass of X and Y will be 130.5g.
The premise for this conclusion is based on the law of conservation of matter.
This law states that "in a chemical reaction, matter is neither created nor destroyed but changed from one form to another".
In essence, in a chemical reaction, there is no mass loss.
- The amount of product in the reaction is expected to be the same as the amount of reactants used in the experiment.
- When we start with 130.5g then we should end with 130.5g
Yes what the other person said can I plz get an thanks
Answer:
1.87 J
Explanation:
q = c x m x (T2-T1)
c- specific heat of water (4.186 j/g.C)
q = 4.186 x 0.5137 x 0.871 = 1.87 J
Answer:
First Blank: 656.3 kJ
Second Blank: Endothermic
Explanation:
Edge 21'
Answer: Every enzyme has a specific name that can give us insight into the specific reaction that that enzyme can catalyze. We divide them into six different categories.
1) Oxidoreductase - includes two different types of reactions by transferring electrons from either molecule A to B or vice versa. It is involved in oxidizing electrons away from a molecule.
2) Hydrolase - uses water to divide a molecule into two other molecules.
3) Transferase - you move some functional group X from molecule B to molecule A
4) Ligase - catalyzes reactions between two molecules, A and B, that are combining to form a complex between the two. (example: DNA replication)
5) Lyase - divides a molecule into two other molecules without using water and without reducing or oxidation