Green plants transform solar energy<span> to </span>chemical energy<span> (mostly of oxygen) through the </span>process<span> known as photosynthesis, and electrical </span>energy<span> can be converted to </span>chemical energy<span> and vice versa through electrochemical reactions.</span>
Answer:it would have a negative charge because electrons are negative
Explanation:
Answer:
Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
Explanation:
In writing the cell notation for an electrochemical cell, the anode is written on the left hand side while the cathode is written on the right hand side. The two half cells are separated by two thick lines which represents the salt bridge.
For the cell discussed in the question; the Mn(s)/Mn^2+(aq) is the anode while the Co^2+(aq)/Co(s) half cell is the cathode.
Hence I can write; Mn(s)/Mn^2+(aq)//Co^2+(aq)/Co(s)
Answer : The rate of effusion of sulfur dioxide gas is 52 mL/s.
Solution :
According to the Graham's law, the rate of effusion of gas is inversely proportional to the square root of the molar mass of gas.

or,
..........(1)
where,
= rate of effusion of nitrogen gas = 
= rate of effusion of sulfur dioxide gas = ?
= molar mass of nitrogen gas = 28 g/mole
= molar mass of sulfur dioxide gas = 64 g/mole
Now put all the given values in the above formula 1, we get:


Therefore, the rate of effusion of sulfur dioxide gas is 52 mL/s.
Answer:
Explanation:
If the reaction is really exothermic (and it is) then the water would spatter all over the place. It would boil off if the container could hold it. It would also react according to the following reaction.
You are talking about a reaction like
2K + 2HOH = 2KOH + H2