The answer should be A.
Hope this helps :-)
<u>Answer:</u> Group 1 ions are known as cations and Group 17 ions are known as anions.
<u>Explanation:</u>
Ions are formed when an atom looses or gains electrons.
If an atom gains electrons, it leads to the formation of negative ions known as anions. <u>For Example:</u> Fluorine is a Group 17 element which gains 1 electron to form
ions.
If an atom looses electrons, it leads to the formation of positive ions known as cations. <u>For Example:</u> Sodium is a Group 1 element which looses 1 electron to form
ions.
Hence, group 1 ions are known as cations and Group 17 ions are known as anions.
Answer:
Explanation:
The first one is CrO. The Chromium has the same charge as the oxygen so mol numbers are dropped.
The Second one is CrO2 The two oxygens have a charge of 2(-2) = -4. To balance this, the Chromium must have a charge of +4 Cr(Iv)O2
The third one is can be set up like this
Cr + 3(-2) = 0
Cr - 6 = 0
Cr = 6
Therefore the formula is Cr(vi)O3
The last one is a bit tricky. Follow this carefully. There are 2 Crs and 3Os.
The formula looks like this
2Cr + 3(-2) = 0
2Cr - 6 = 0
2Cr = 6
Cr = 3
The formula is Cr(iii)2 O3
Answer:
oxygen, water and sugar are the out come of photosynthesis
Explanation:
Earlier, we located the valence electrons for elements Z < 20 by drawing modified Bohr structures. We can obtain these values quicker by referring to the roman numeral numbers above each family on the periodic table. The total number of valence electrons for an atom can vary between one and eight. If an element is located on the left side of the table (metal) and has less than three valence electrons, it will lose its valence in order to become stable and achieve an octet. In contrast, elements on the right side of the table (nonmetals) will gain up to eight electrons to achieve octet status.