To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1V1/V2
P2 = 740mmhg x 19 mL / 30 mL
<span>P2 = 468.67 mmHg = 0.62 atm</span>
Mass of H₂ needed to react with O₂ : 1.092 g
<h3>Further explanation</h3>
The concentration of a substance can be expressed in several quantities such as moles, percent (%) weight / volume,), molarity, molality, parts per million (ppm) or mole fraction. The concentration shows the amount of solute in a unit of the amount of solvent.
Reaction
O₂(g) + 2H₂(g) → 2H₂O(g)
mass of O₂ : 8.75 g
mol O₂(MW=32 g/mol) :

From the equation, mol ratio of O₂ : H₂ = 1 : 2, so mol H₂ :

Mass H₂ (MW=2 g/mol) :

The chain reaction is easy to stop. Just add a neuron absorbing material. The Control Rods in rectors can do that You just SCRAM (put the rods all the way in) or add something like Boron and the chain reaction stops.
<span>The problem is the radioactive waste. Those isotopes break down and release heat spontaneously, no neutrons required. The only known way to stop or slow radioactive decay down is to slow time down by moving at relativistic speed or near orbit to a black hole.</span>
Families are another names for the columns