Answer:
find the sum of the inital and final velocitys and divide by 2 to find the average
Answer:2.6 h
Explanation:
Given
Total Trip distance=450 miles
Meeting starts after 10.8 hours
safe Fastest speed is 55 mi/h
so if he drives all the to the meeting with max speed then it takes
and total allowable time is 10.8
Therefore longest time he can spend over dinner is
Answer:
b. v = 0, a = 9.8 m/s² down.
Explanation:
Hi there!
The acceleration of gravity is always directed to the ground (down) and, near the surface of the earth, has a constant value of 9.8 m/s². Since the answer "b" is the only option with an acceleration of 9.8 m/s² directed downwards, that would solve the exercise. But why is the velocity zero at the highest point?
Let´s take a look at the height function:
h(t) = h0 + v0 · t + 1/2 g · t²
Where
h0 = initial height
v0 = initial velocity
t = time
g = acceleration due to gravity
Notice that the function is a negative parabola if we consider downward as negative (in that case "g" would be negative). Then, the function has a maximum (the highest point) at the vertex of the parabola. At the maximum point, the slope of the tangent line to the function is zero, because the tangent line is horizontal at a maximum point. The slope of the tangent line to the function is the rate of change of height with respect to time, i.e, the velocity. Then, the velocity is zero at the maximum height.
Another way to see it (without calculus):
When the ball is going up, the velocity vector points up and the velocity is positive. After reaching the maximum height, the velocity vector points down and is negative (the ball starts to fall). At the maximum height, the velocity vector changed its direction from positive to negative, then at that point, the velocity vector has to be zero.
The coefficient of friction between the soap and the floor is 0.081
If Juan steps on the soap with a force of 493 N, this is her weight, W. This weight also equals the normal reaction on the floor, N.
We know that frictional force F = μN where μ = coefficient of friction between soap and floor.
So, μ = F/N
Since F = 40 N and N = W = 493 N,
μ = F/N
μ = 40 N/493 N
μ = 0.081
So, the coefficient of friction between the soap and the floor is 0.081
Learn more about coefficient of friction here:
brainly.com/question/13923375
A. Physics has changed the course of the world.